当前位置: 首页>>代码示例>>C#>>正文


C# SparseMatrix.SolveIterative方法代码示例

本文整理汇总了C#中MathNet.Numerics.LinearAlgebra.Single.SparseMatrix.SolveIterative方法的典型用法代码示例。如果您正苦于以下问题:C# SparseMatrix.SolveIterative方法的具体用法?C# SparseMatrix.SolveIterative怎么用?C# SparseMatrix.SolveIterative使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在MathNet.Numerics.LinearAlgebra.Single.SparseMatrix的用法示例。


在下文中一共展示了SparseMatrix.SolveIterative方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: SolveLongMatrixThrowsArgumentException

        public void SolveLongMatrixThrowsArgumentException()
        {
            var matrix = new SparseMatrix(3, 2);
            var input = new DenseVector(3);

            var solver = new MlkBiCgStab();
            Assert.Throws<ArgumentException>(() => matrix.SolveIterative(input, solver));
        }
开发者ID:EricGT,项目名称:mathnet-numerics,代码行数:8,代码来源:MlkBiCgStabTest.cs

示例2: SolveWideMatrixThrowsArgumentException

        public void SolveWideMatrixThrowsArgumentException()
        {
            var matrix = new SparseMatrix(2, 3);
            var input = new DenseVector(2);

            var solver = new TFQMR();
            Assert.Throws<ArgumentException>(() => matrix.SolveIterative(input, solver));
        }
开发者ID:EricGT,项目名称:mathnet-numerics,代码行数:8,代码来源:TFQMRTest.cs

示例3: SolveWideMatrixThrowsArgumentException

        public void SolveWideMatrixThrowsArgumentException()
        {
            var matrix = new SparseMatrix(2, 3);
            var input = new DenseVector(2);

            var solver = new MlkBiCgStab();
            Assert.That(() => matrix.SolveIterative(input, solver), Throws.ArgumentException);
        }
开发者ID:larzw,项目名称:mathnet-numerics,代码行数:8,代码来源:MlkBiCgStabTest.cs

示例4: SolveLongMatrixThrowsArgumentException

        public void SolveLongMatrixThrowsArgumentException()
        {
            var matrix = new SparseMatrix(3, 2);
            var input = new DenseVector(3);

            var solver = new GpBiCg();
            Assert.That(() => matrix.SolveIterative(input, solver), Throws.ArgumentException);
        }
开发者ID:larzw,项目名称:mathnet-numerics,代码行数:8,代码来源:GpBiCgTest.cs

示例5: SolvePoissonMatrixAndBackMultiply

        public void SolvePoissonMatrixAndBackMultiply()
        {
            // Create the matrix
            var matrix = new SparseMatrix(25);

            // Assemble the matrix. We assume we're solving the Poisson equation
            // on a rectangular 5 x 5 grid
            const int GridSize = 5;

            // The pattern is:
            // 0 .... 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 ... 0
            for (var i = 0; i < matrix.RowCount; i++)
            {
                // Insert the first set of -1's
                if (i > (GridSize - 1))
                {
                    matrix[i, i - GridSize] = -1;
                }

                // Insert the second set of -1's
                if (i > 0)
                {
                    matrix[i, i - 1] = -1;
                }

                // Insert the centerline values
                matrix[i, i] = 4;

                // Insert the first trailing set of -1's
                if (i < matrix.RowCount - 1)
                {
                    matrix[i, i + 1] = -1;
                }

                // Insert the second trailing set of -1's
                if (i < matrix.RowCount - GridSize)
                {
                    matrix[i, i + GridSize] = -1;
                }
            }

            // Create the y vector
            var y = DenseVector.Create(matrix.RowCount, i => 1);

            // Create an iteration monitor which will keep track of iterative convergence
            var monitor = new Iterator<float>(
                new IterationCountStopCriterium<float>(MaximumIterations),
                new ResidualStopCriterium(ConvergenceBoundary),
                new DivergenceStopCriterium(),
                new FailureStopCriterium());

            var solver = new TFQMR();

            // Solve equation Ax = y
            var x = matrix.SolveIterative(y, solver, monitor);

            // Now compare the results
            Assert.IsNotNull(x, "#02");
            Assert.AreEqual(y.Count, x.Count, "#03");

            // Back multiply the vector
            var z = matrix.Multiply(x);

            // Check that the solution converged
            Assert.IsTrue(monitor.Status == IterationStatus.Converged, "#04");

            // Now compare the vectors
            for (var i = 0; i < y.Count; i++)
            {
                Assert.IsTrue(Math.Abs(y[i] - z[i]).IsSmaller(ConvergenceBoundary, 1), "#05-" + i);
            }
        }
开发者ID:nakamoton,项目名称:mathnet-numerics,代码行数:72,代码来源:TFQMRTest.cs

示例6: SolvePoissonMatrixAndBackMultiply

        public void SolvePoissonMatrixAndBackMultiply()
        {
            // Create the matrix
            var matrix = new SparseMatrix(25);

            // Assemble the matrix. We assume we're solving the Poisson equation
            // on a rectangular 5 x 5 grid
            const int GridSize = 5;

            // The pattern is:
            // 0 .... 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 ... 0
            for (var i = 0; i < matrix.RowCount; i++)
            {
                // Insert the first set of -1's
                if (i > (GridSize - 1))
                {
                    matrix[i, i - GridSize] = -1;
                }

                // Insert the second set of -1's
                if (i > 0)
                {
                    matrix[i, i - 1] = -1;
                }

                // Insert the centerline values
                matrix[i, i] = 4;

                // Insert the first trailing set of -1's
                if (i < matrix.RowCount - 1)
                {
                    matrix[i, i + 1] = -1;
                }

                // Insert the second trailing set of -1's
                if (i < matrix.RowCount - GridSize)
                {
                    matrix[i, i + GridSize] = -1;
                }
            }

            // Create the y vector
            var y = DenseVector.Create(matrix.RowCount, i => 1);

            // Due to datatype "float" it can happen that solution will not converge for specific random starting vectors
            // That's why we will do 3 tries
            for (var iteration = 0; iteration <= 3; iteration++)
            {
                // Create an iteration monitor which will keep track of iterative convergence
                var monitor = new Iterator<float>(
                    new IterationCountStopCriterium<float>(MaximumIterations),
                    new ResidualStopCriterium<float>(ConvergenceBoundary),
                    new DivergenceStopCriterium<float>(),
                    new FailureStopCriterium<float>());

                var solver = new MlkBiCgStab();

                // Solve equation Ax = y
                Vector<float> x;
                try
                {
                    x = matrix.SolveIterative(y, solver, monitor);
                }
                catch (Exception)
                {
                    continue;
                }

                if (monitor.Status != IterationStatus.Converged)
                {
                    continue;
                }

                // Now compare the results
                Assert.IsNotNull(x, "#02");
                Assert.AreEqual(y.Count, x.Count, "#03");

                // Back multiply the vector
                var z = matrix.Multiply(x);

                // Now compare the vectors
                for (var i = 0; i < y.Count; i++)
                {
                    Assert.GreaterOrEqual(ConvergenceBoundary, Math.Abs(y[i] - z[i]), "#05-" + i);
                }

                return;
            }
        }
开发者ID:EricGT,项目名称:mathnet-numerics,代码行数:89,代码来源:MlkBiCgStabTest.cs


注:本文中的MathNet.Numerics.LinearAlgebra.Single.SparseMatrix.SolveIterative方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。