本文整理汇总了C#中MathNet.Numerics.LinearAlgebra.Single.SparseMatrix类的典型用法代码示例。如果您正苦于以下问题:C# SparseMatrix类的具体用法?C# SparseMatrix怎么用?C# SparseMatrix使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
SparseMatrix类属于MathNet.Numerics.LinearAlgebra.Single命名空间,在下文中一共展示了SparseMatrix类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: SolveWideMatrixThrowsArgumentException
public void SolveWideMatrixThrowsArgumentException()
{
var matrix = new SparseMatrix(2, 3);
var input = new DenseVector(2);
var solver = new TFQMR();
Assert.Throws<ArgumentException>(() => matrix.SolveIterative(input, solver));
}
示例2: SolveLongMatrixThrowsArgumentException
public void SolveLongMatrixThrowsArgumentException()
{
var matrix = new SparseMatrix(3, 2);
var input = new DenseVector(3);
var solver = new MlkBiCgStab();
Assert.Throws<ArgumentException>(() => matrix.SolveIterative(input, solver));
}
示例3: SolveWideMatrixThrowsArgumentException
public void SolveWideMatrixThrowsArgumentException()
{
var matrix = new SparseMatrix(2, 3);
var input = new DenseVector(2);
var solver = new MlkBiCgStab();
Assert.That(() => matrix.SolveIterative(input, solver), Throws.ArgumentException);
}
示例4: SolveLongMatrixThrowsArgumentException
public void SolveLongMatrixThrowsArgumentException()
{
var matrix = new SparseMatrix(3, 2);
var input = new DenseVector(3);
var solver = new GpBiCg();
Assert.That(() => matrix.SolveIterative(input, solver), Throws.ArgumentException);
}
示例5: CreateUnitMatrix
/// <summary>
/// Create unit matrix.
/// </summary>
/// <param name="size">Matrix size.</param>
/// <returns>New unit matrix.</returns>
internal SparseMatrix CreateUnitMatrix(int size)
{
var matrix = new SparseMatrix(size);
for (var i = 0; i < size; i++)
{
matrix[i, i] = 2;
}
return matrix;
}
示例6: CheckResult
/// <summary>
/// Check the result.
/// </summary>
/// <param name="preconditioner">Specific preconditioner.</param>
/// <param name="matrix">Source matrix.</param>
/// <param name="vector">Initial vector.</param>
/// <param name="result">Result vector.</param>
protected override void CheckResult(IPreconditioner<float> preconditioner, SparseMatrix matrix, Vector<float> vector, Vector<float> result)
{
Assert.AreEqual(typeof (UnitPreconditioner<float>), preconditioner.GetType(), "#01");
// Unit preconditioner is doing nothing. Vector and result should be equal
for (var i = 0; i < vector.Count; i++)
{
Assert.IsTrue(vector[i] == result[i], "#02-" + i);
}
}
示例7: CheckResult
/// <summary>
/// Check the result.
/// </summary>
/// <param name="preconditioner">Specific preconditioner.</param>
/// <param name="matrix">Source matrix.</param>
/// <param name="vector">Initial vector.</param>
/// <param name="result">Result vector.</param>
protected override void CheckResult(IPreconditioner<float> preconditioner, SparseMatrix matrix, Vector<float> vector, Vector<float> result)
{
Assert.AreEqual(typeof (DiagonalPreconditioner), preconditioner.GetType(), "#01");
// Compute M * result = product
// compare vector and product. Should be equal
var product = new DenseVector(result.Count);
matrix.Multiply(result, product);
for (var i = 0; i < product.Count; i++)
{
Assert.IsTrue(((double) vector[i]).AlmostEqualNumbersBetween(product[i], -Epsilon.Magnitude()), "#02-" + i);
}
}
示例8: CanAddSparseMatricesBothWays
public void CanAddSparseMatricesBothWays()
{
var m1 = new SparseMatrix(1, 3);
var m2 = SparseMatrix.OfArray(new float[,] { { 0, 1, 1 } });
var sum1 = m1 + m2;
var sum2 = m2 + m1;
Assert.IsTrue(sum1.Equals(m2));
Assert.IsTrue(sum1.Equals(sum2));
var sparseResult = new SparseMatrix(1, 3);
sparseResult.Add(m2, sparseResult);
Assert.IsTrue(sparseResult.Equals(sum1));
sparseResult = SparseMatrix.OfArray(new float[,] { { 0, 1, 1 } });
sparseResult.Add(m1, sparseResult);
Assert.IsTrue(sparseResult.Equals(sum1));
sparseResult = SparseMatrix.OfArray(new float[,] { { 0, 1, 1 } });
m1.Add(sparseResult, sparseResult);
Assert.IsTrue(sparseResult.Equals(sum1));
sparseResult = SparseMatrix.OfArray(new float[,] { { 0, 1, 1 } });
sparseResult.Add(sparseResult, sparseResult);
Assert.IsTrue(sparseResult.Equals(2*sum1));
var denseResult = new DenseMatrix(1, 3);
denseResult.Add(m2, denseResult);
Assert.IsTrue(denseResult.Equals(sum1));
denseResult = DenseMatrix.OfArray(new float[,] {{0, 1, 1}});
denseResult.Add(m1, denseResult);
Assert.IsTrue(denseResult.Equals(sum1));
var m3 = DenseMatrix.OfArray(new float[,] {{0, 1, 1}});
var sum3 = m1 + m3;
var sum4 = m3 + m1;
Assert.IsTrue(sum3.Equals(m3));
Assert.IsTrue(sum3.Equals(sum4));
}
示例9: InsertColumn
/// <summary>
/// Creates a new <see cref="SparseMatrix"/> and inserts the given column at the given index.
/// </summary>
/// <param name="columnIndex">The index of where to insert the column.</param>
/// <param name="column">The column to insert.</param>
/// <returns>A new <see cref="SparseMatrix"/> with the inserted column.</returns>
/// <exception cref="ArgumentNullException">If <paramref name="column "/> is <see langword="null" />. </exception>
/// <exception cref="ArgumentOutOfRangeException">If <paramref name="columnIndex"/> is < zero or > the number of columns.</exception>
/// <exception cref="ArgumentException">If the size of <paramref name="column"/> != the number of rows.</exception>
public override Matrix<float> InsertColumn(int columnIndex, Vector<float> column)
{
if (column == null)
{
throw new ArgumentNullException("column");
}
if (columnIndex < 0 || columnIndex > ColumnCount)
{
throw new ArgumentOutOfRangeException("columnIndex");
}
if (column.Count != RowCount)
{
throw new ArgumentException(Resources.ArgumentMatrixSameRowDimension, "column");
}
var result = new SparseMatrix(RowCount, ColumnCount + 1);
for (var i = 0; i < columnIndex; i++)
{
result.SetColumn(i, Column(i));
}
result.SetColumn(columnIndex, column);
for (var i = columnIndex + 1; i < ColumnCount + 1; i++)
{
result.SetColumn(i, Column(i - 1));
}
return result;
}
示例10: Identity
/// <summary>
/// Initializes a square <see cref="SparseMatrix"/> with all zero's except for ones on the diagonal.
/// </summary>
/// <param name="order">the size of the square matrix.</param>
/// <returns>Identity <c>SparseMatrix</c></returns>
/// <exception cref="ArgumentException">
/// If <paramref name="order"/> is less than one.
/// </exception>
public static SparseMatrix Identity(int order)
{
var m = new SparseMatrix(order);
var mStorage = m.Raw;
mStorage.ValueCount = order;
mStorage.Values = new float[order];
mStorage.ColumnIndices = new int[order];
for (var i = 0; i < order; i++)
{
mStorage.Values[i] = 1f;
mStorage.ColumnIndices[i] = i;
mStorage.RowPointers[i] = i;
}
return m;
}
示例11: SolvePoissonMatrixAndBackMultiply
public void SolvePoissonMatrixAndBackMultiply()
{
// Create the matrix
var matrix = new SparseMatrix(25);
// Assemble the matrix. We assume we're solving the Poisson equation
// on a rectangular 5 x 5 grid
const int GridSize = 5;
// The pattern is:
// 0 .... 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 ... 0
for (var i = 0; i < matrix.RowCount; i++)
{
// Insert the first set of -1's
if (i > (GridSize - 1))
{
matrix[i, i - GridSize] = -1;
}
// Insert the second set of -1's
if (i > 0)
{
matrix[i, i - 1] = -1;
}
// Insert the centerline values
matrix[i, i] = 4;
// Insert the first trailing set of -1's
if (i < matrix.RowCount - 1)
{
matrix[i, i + 1] = -1;
}
// Insert the second trailing set of -1's
if (i < matrix.RowCount - GridSize)
{
matrix[i, i + GridSize] = -1;
}
}
// Create the y vector
var y = DenseVector.Create(matrix.RowCount, i => 1);
// Due to datatype "float" it can happen that solution will not converge for specific random starting vectors
// That's why we will do 3 tries
for (var iteration = 0; iteration <= 3; iteration++)
{
// Create an iteration monitor which will keep track of iterative convergence
var monitor = new Iterator<float>(
new IterationCountStopCriterium<float>(MaximumIterations),
new ResidualStopCriterium<float>(ConvergenceBoundary),
new DivergenceStopCriterium<float>(),
new FailureStopCriterium<float>());
var solver = new MlkBiCgStab();
// Solve equation Ax = y
Vector<float> x;
try
{
x = matrix.SolveIterative(y, solver, monitor);
}
catch (Exception)
{
continue;
}
if (monitor.Status != IterationStatus.Converged)
{
continue;
}
// Now compare the results
Assert.IsNotNull(x, "#02");
Assert.AreEqual(y.Count, x.Count, "#03");
// Back multiply the vector
var z = matrix.Multiply(x);
// Now compare the vectors
for (var i = 0; i < y.Count; i++)
{
Assert.GreaterOrEqual(ConvergenceBoundary, Math.Abs(y[i] - z[i]), "#05-" + i);
}
return;
}
}
示例12: CheckResult
/// <summary>
/// Check the result.
/// </summary>
/// <param name="preconditioner">Specific preconditioner.</param>
/// <param name="matrix">Source matrix.</param>
/// <param name="vector">Initial vector.</param>
/// <param name="result">Result vector.</param>
protected abstract void CheckResult(IPreconditioner<float> preconditioner, SparseMatrix matrix, Vector<float> vector, Vector<float> result);
示例13: OfDiagonalVector
/// <summary>
/// Create a new sparse matrix with the diagonal as a copy of the given vector.
/// This new matrix will be independent from the vector.
/// A new memory block will be allocated for storing the matrix.
/// </summary>
public static SparseMatrix OfDiagonalVector(int rows, int columns, Vector<float> diagonal)
{
var m = new SparseMatrix(rows, columns);
m.SetDiagonal(diagonal);
return m;
}
示例14: OfDiagonalArray
/// <summary>
/// Create a new sparse matrix with the diagonal as a copy of the given array.
/// This new matrix will be independent from the array.
/// A new memory block will be allocated for storing the matrix.
/// </summary>
public static SparseMatrix OfDiagonalArray(int rows, int columns, float[] diagonal)
{
var m = new SparseMatrix(rows, columns);
m.SetDiagonal(diagonal);
return m;
}
示例15: SolvePoissonMatrixAndBackMultiply
public void SolvePoissonMatrixAndBackMultiply()
{
// Create the matrix
var matrix = new SparseMatrix(25);
// Assemble the matrix. We assume we're solving the Poisson equation
// on a rectangular 5 x 5 grid
const int GridSize = 5;
// The pattern is:
// 0 .... 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 ... 0
for (var i = 0; i < matrix.RowCount; i++)
{
// Insert the first set of -1's
if (i > (GridSize - 1))
{
matrix[i, i - GridSize] = -1;
}
// Insert the second set of -1's
if (i > 0)
{
matrix[i, i - 1] = -1;
}
// Insert the centerline values
matrix[i, i] = 4;
// Insert the first trailing set of -1's
if (i < matrix.RowCount - 1)
{
matrix[i, i + 1] = -1;
}
// Insert the second trailing set of -1's
if (i < matrix.RowCount - GridSize)
{
matrix[i, i + GridSize] = -1;
}
}
// Create the y vector
var y = DenseVector.Create(matrix.RowCount, i => 1);
// Create an iteration monitor which will keep track of iterative convergence
var monitor = new Iterator<float>(
new IterationCountStopCriterium<float>(MaximumIterations),
new ResidualStopCriterium(ConvergenceBoundary),
new DivergenceStopCriterium(),
new FailureStopCriterium());
var solver = new TFQMR();
// Solve equation Ax = y
var x = matrix.SolveIterative(y, solver, monitor);
// Now compare the results
Assert.IsNotNull(x, "#02");
Assert.AreEqual(y.Count, x.Count, "#03");
// Back multiply the vector
var z = matrix.Multiply(x);
// Check that the solution converged
Assert.IsTrue(monitor.Status == IterationStatus.Converged, "#04");
// Now compare the vectors
for (var i = 0; i < y.Count; i++)
{
Assert.IsTrue(Math.Abs(y[i] - z[i]).IsSmaller(ConvergenceBoundary, 1), "#05-" + i);
}
}