当前位置: 首页>>代码示例>>C#>>正文


C# DenseVector.Min方法代码示例

本文整理汇总了C#中MathNet.Numerics.LinearAlgebra.Double.DenseVector.Min方法的典型用法代码示例。如果您正苦于以下问题:C# DenseVector.Min方法的具体用法?C# DenseVector.Min怎么用?C# DenseVector.Min使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在MathNet.Numerics.LinearAlgebra.Double.DenseVector的用法示例。


在下文中一共展示了DenseVector.Min方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: Normalize0to1

 public static DenseVector Normalize0to1(this DenseVector data)
 {
     var d = new DenseVector(data);
     var result = new DenseVector(d.Count);
     d.CopyTo(result);
     return (DenseVector) (result - d.Min())/(d.Max() - d.Min());
 }
开发者ID:ifzz,项目名称:QuantSys,代码行数:7,代码来源:StatisticsExtension.cs

示例2: NormalizeNeg1to1

 public static double[] NormalizeNeg1to1(this double[] data)
 {
     var d = new DenseVector(data);
     var result = new DenseVector(d.Count);
     d.CopyTo(result);
     result = (DenseVector) (result - ((d.Max() + d.Min())/2))/((d.Max() - d.Min())/2);
     return result.ToArray();
 }
开发者ID:ifzz,项目名称:QuantSys,代码行数:8,代码来源:StatisticsExtension.cs

示例3: ModificatedDualIteration


//.........这里部分代码省略.........
            var nk = kappaValue < _task.dLower[kappaIndex] ? 1 : -1;
            var deltaYT =
                nk * DenseVector.Create(_task.Jb.Count, i => i == _task.Jb.ToList().IndexOf(kappaIndex) ? 1 : 0)
                * DenseMatrix.OfColumnVectors(vectorCollection.ToArray()).Inverse();

            var nVector = new DenseVector(_task.A.ColumnCount);
            for (int i = 0; i < _task.A.ColumnCount; i++)
            {
                if (!_task.Jb.Contains(i))
                {
                    nVector[i] = (deltaYT * _task.A.Column(i));
                }
            }

            // Step6
            Vector<double> sigmaVector = new DenseVector(_task.A.ColumnCount);
            for (int i = 0; i < sigmaVector.Count; i++)
            {
                if (_task.dLower[i] == _task.dUpper[i])
                {
                    sigmaVector[i] = double.PositiveInfinity;
                }
                else if (_JNbUpper.Contains(i) && nVector[i] < Eps)
                {
                    sigmaVector[i] = -deltas[i] / nVector[i];
                }
                else if (_JNbLower.Contains(i) && nVector[i] > Eps)
                {
                    sigmaVector[i] = -deltas[i] / nVector[i];
                }
                else
                {
                    sigmaVector[i] = double.PositiveInfinity;
                }
            }

            var sigma0 = sigmaVector.Min();
            var sigma0Index = sigmaVector.MinimumIndex();

            // Step7
            if (sigma0 == double.PositiveInfinity)
            {
                //Logger.Log("Stopped at seventh step");
                _stopStep = 7;
                return false;
            }

            // Step8
            Vector<double> newDeltas = new DenseVector(_task.A.ColumnCount);
            for (int i = 0; i < newDeltas.Count; i++)
            {
                if (_task.Jb.Contains(i) && i != kappaIndex)
                {
                    newDeltas[i] = 0;
                }
                else if (i == kappaIndex)
                {
                    newDeltas[i] = sigma0 * nk;
                }
                else
                {
                    newDeltas[i] = deltas[i] + sigma0 * nVector[i];
                }
            }

            deltas = newDeltas.ToList();
            // Step9
            _task.Jb[_task.Jb.ToList().IndexOf(kappaIndex)] = sigma0Index;

            // Step10
            if (nk == 1.0)
            {
                if (_JNbUpper.Contains(sigma0Index))
                {
                    _JNbUpper[_JNbUpper.IndexOf(sigma0Index)] = kappaIndex;
                }
                else
                {
                    _JNbUpper.Add(kappaIndex);
                }
            }
            else if (nk == -1.0)
            {
                if (_JNbUpper.Contains(sigma0Index))
                {
                    _JNbUpper.Remove(sigma0Index);
                }
            }

            _JNbLower.Clear();
            for (int i = 0; i < _task.A.ColumnCount; i++)
            {
                if (!_JNbUpper.Contains(i) && !_task.Jb.Contains(i))
                {
                    _JNbLower.Add(i);
                }
            }

            return true;
        }
开发者ID:Kant8,项目名称:IOp,代码行数:101,代码来源:ModifiedDualSimplexMethod.cs


注:本文中的MathNet.Numerics.LinearAlgebra.Double.DenseVector.Min方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。