当前位置: 首页>>代码示例>>C#>>正文


C# DenseVector.DotProduct方法代码示例

本文整理汇总了C#中MathNet.Numerics.LinearAlgebra.Double.DenseVector.DotProduct方法的典型用法代码示例。如果您正苦于以下问题:C# DenseVector.DotProduct方法的具体用法?C# DenseVector.DotProduct怎么用?C# DenseVector.DotProduct使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在MathNet.Numerics.LinearAlgebra.Double.DenseVector的用法示例。


在下文中一共展示了DenseVector.DotProduct方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: SetRealVertices

        private static void SetRealVertices(Workspace workspace)
        {
            Vector<double> fittedPlaneVector = GeometryHelper.FitPlaneToPoints(workspace.PointCloud.ToArray());

            if (fittedPlaneVector == null)
            {
                return;
            }

            Point3D projectedPoint = GeometryHelper.ProjectPoint3DToPlane(workspace.PointCloud.First(), fittedPlaneVector);

            Vector<double> planeNormal = new DenseVector(new[] { fittedPlaneVector[0], fittedPlaneVector[1], fittedPlaneVector[2] });

            Point3D[] vertices3D = workspace.Vertices3D;

            Point[] vertices = workspace.Vertices.ToArray();

            for (int i = 0; i < vertices.Length; i++)
            {

                Vector<double> pointOnPlane = new DenseVector(new[] { projectedPoint.X, projectedPoint.Y, projectedPoint.Z });
                Vector<double> pointOnLine = new DenseVector(new double[] { vertices3D[i].X, vertices3D[i].Y, vertices3D[i].Z });

                double d = (pointOnPlane.Subtract(pointOnLine)).DotProduct(planeNormal) / (pointOnLine.DotProduct(planeNormal));

                Vector<double> intersection = pointOnLine + pointOnLine.Multiply(d);

                workspace.FittedVertices[i] = new Point3D(intersection[0], intersection[1], intersection[2]);
            }

            workspace.PlaneVector = fittedPlaneVector;
        }
开发者ID:frksptr,项目名称:kinect-demo,代码行数:32,代码来源:WorkspaceProcessor.cs

示例2: Run

        /// <summary>
        /// Run example.
        /// </summary>
        /// <seealso cref="http://en.wikipedia.org/wiki/Euclidean_vector#Scalar_multiplication">Multiply vector by scalar</seealso>
        /// <seealso cref="http://en.wikipedia.org/wiki/Euclidean_vector#Dot_product">Multiply vector by vector (compute the dot product between two vectors)</seealso>
        /// <seealso cref="http://en.wikipedia.org/wiki/Euclidean_vector#Addition_and_subtraction">Vector addition and subtraction</seealso>
        /// <seealso cref="http://en.wikipedia.org/wiki/Outer_product">Outer Product of two vectors</seealso>
        public void Run()
        {
            // Initialize IFormatProvider to print matrix/vector data
            var formatProvider = (CultureInfo)CultureInfo.InvariantCulture.Clone();
            formatProvider.TextInfo.ListSeparator = " ";

            // Create vector "X"
            var vectorX = new DenseVector(new[] { 1.0, 2.0, 3.0, 4.0, 5.0 });
            Console.WriteLine(@"Vector X");
            Console.WriteLine(vectorX.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // Create vector "Y"
            var vectorY = new DenseVector(new[] { 5.0, 4.0, 3.0, 2.0, 1.0 });
            Console.WriteLine(@"Vector Y");
            Console.WriteLine(vectorY.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // Multiply vector by scalar
            // 1. Using Multiply method and getting result into different vector instance
            var resultV = vectorX.Multiply(3.0);
            Console.WriteLine(@"Multiply vector by scalar using method Multiply. (result = X.Multiply(3.0))");
            Console.WriteLine(resultV.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 2. Using operator "*"
            resultV = 3.0 * vectorX;
            Console.WriteLine(@"Multiply vector by scalar using operator *. (result = 3.0 * X)");
            Console.WriteLine(resultV.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 3. Using Multiply method and updating vector itself
            vectorX.Multiply(3.0, vectorX);
            Console.WriteLine(@"Multiply vector by scalar using method Multiply. (X.Multiply(3.0, X))");
            Console.WriteLine(vectorX.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // Multiply vector by vector (compute the dot product between two vectors)
            // 1. Using operator "*"
            var dotProduct = vectorX * vectorY;
            Console.WriteLine(@"Dot product between two vectors using operator *. (result = X * Y)");
            Console.WriteLine(dotProduct);
            Console.WriteLine();

            // 2. Using DotProduct method and getting result into different vector instance
            dotProduct = vectorX.DotProduct(vectorY);
            Console.WriteLine(@"Dot product between two vectors using method DotProduct. (result = X.DotProduct(Y))");
            Console.WriteLine(dotProduct.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // Pointwise multiplies vector with another vector
            // 1. Using PointwiseMultiply method and getting result into different vector instance
            resultV = vectorX.PointwiseMultiply(vectorY);
            Console.WriteLine(@"Pointwise multiplies vector with another vector using method PointwiseMultiply. (result = X.PointwiseMultiply(Y))");
            Console.WriteLine(resultV.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 2. Using PointwiseMultiply method and updating vector itself
            vectorX.PointwiseMultiply(vectorY, vectorX);
            Console.WriteLine(@"Pointwise multiplies vector with another vector using method PointwiseMultiply. (X.PointwiseMultiply(Y, X))");
            Console.WriteLine(vectorX.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // Pointwise divide vector with another vector
            // 1. Using PointwiseDivide method and getting result into different vector instance
            resultV = vectorX.PointwiseDivide(vectorY);
            Console.WriteLine(@"Pointwise divide vector with another vector using method PointwiseDivide. (result = X.PointwiseDivide(Y))");
            Console.WriteLine(resultV.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 2. Using PointwiseDivide method and updating vector itself
            vectorX.PointwiseDivide(vectorY, vectorX);
            Console.WriteLine(@"Pointwise divide vector with another vector using method PointwiseDivide. (X.PointwiseDivide(Y, X))");
            Console.WriteLine(vectorX.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // Addition
            // 1. Using operator "+"
            resultV = vectorX + vectorY;
            Console.WriteLine(@"Add vectors using operator +. (result = X + Y)");
            Console.WriteLine(resultV.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 2. Using Add method and getting result into different vector instance
            resultV = vectorX.Add(vectorY);
            Console.WriteLine(@"Add vectors using method Add. (result = X.Add(Y))");
            Console.WriteLine(resultV.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 3. Using Add method and updating vector itself
            vectorX.Add(vectorY, vectorX);
            Console.WriteLine(@"Add vectors using method Add. (X.Add(Y, X))");
            Console.WriteLine(vectorX.ToString("#0.00\t", formatProvider));
//.........这里部分代码省略.........
开发者ID:Mistrall,项目名称:Solvation,代码行数:101,代码来源:VectorArithmeticOperations.cs

示例3: SetRealVertices

        public void SetRealVertices(Workspace workspace)
        {
            Vector<double> fittedPlaneVector = GeometryHelper.FitPlaneToPoints(workspace.PointCloud.ToArray());

            if (fittedPlaneVector == null)
            {
                return;
            }

            Point3D projectedPoint = GeometryHelper.ProjectPoint3DToPlane(workspace.PointCloud.First(), fittedPlaneVector);

            Vector<double> planeNormal = new DenseVector(new[] { fittedPlaneVector[0], fittedPlaneVector[1], fittedPlaneVector[2] });

            CameraSpacePoint[] csps = { new CameraSpacePoint() };

            Point[] vertices = workspace.Vertices.ToArray();

            for (int i = 0; i < vertices.Length; i++)
            {
                Point vertex = vertices[i];

                kinectStreamer.CoordinateMapper.MapDepthPointsToCameraSpace(
                    new[] {
                        new DepthSpacePoint {
                            X = (float)vertex.X,
                            Y = (float)vertex.Y
                        }
                    },
                    new ushort[] { 1 }, csps);

                Vector<double> pointOnPlane = new DenseVector(new[] { projectedPoint.X, projectedPoint.Y, projectedPoint.Z });
                Vector<double> pointOnLine = new DenseVector(new double[] { csps[0].X, csps[0].Y, csps[0].Z });

                double d = (pointOnPlane.Subtract(pointOnLine)).DotProduct(planeNormal) / (pointOnLine.DotProduct(planeNormal));

                Vector<double> intersection = pointOnLine + pointOnLine.Multiply(d);

                workspace.FittedVertices[i] = new Point3D(intersection[0], intersection[1], intersection[2]);
            }

            workspace.PlaneVector = fittedPlaneVector;
        }
开发者ID:kovand11,项目名称:kinect-demo,代码行数:42,代码来源:CloudView.cs

示例4: RunPLAvsSVM

        static Tuple<double, double> RunPLAvsSVM(int experiments, int points)
        {
            const int TEST_POINTS = 10000;
              Random rnd = new Random();

              long svmWins = 0, svCount = 0;
              for (int i = 1; i <= experiments; i++)
              {
            //pick a random line y = a * x + b
            double x1 = rnd.NextDouble(), y1 = rnd.NextDouble(), x2 = rnd.NextDouble(), y2 = rnd.NextDouble();
            var Wf = new DenseVector(3);
            Wf[0] = 1;
            Wf[1] = (y1 - y2) / (x1 * y2 - y1 * x2);
            Wf[2] = (x2 - x1) / (x1 * y2 - y1 * x2);
            Func<MathNet.Numerics.LinearAlgebra.Generic.Vector<double>, int> f = x => Wf.DotProduct(x) >= 0 ? 1 : -1;

            //generate training set of N random points
            var X = new DenseMatrix(points, 3);
            do
              for (int j = 0; j < points; j++)
              {
            X[j, 0] = 1;
            X[j, 1] = rnd.NextDouble() * 2 - 1;
            X[j, 2] = rnd.NextDouble() * 2 - 1;
              }
            while (Enumerable.Range(0, X.RowCount).All(j => f(X.Row(0)) == f(X.Row(j))));

            var W = new DenseVector(3);
            Func<MathNet.Numerics.LinearAlgebra.Generic.Vector<double>, int> h = x => W.DotProduct(x) >= 0 ? 1 : -1;

            //run Perceptron
            int k = 1;
            while (Enumerable.Range(0, points).Any(j => h(X.Row(j)) != f(X.Row(j))))
            {
              //find all misclasified points
              int[] M = Enumerable.Range(0, points).Where(j => h(X.Row(j)) != f(X.Row(j))).ToArray();
              int m = M[rnd.Next(0, M.Length)];

              int sign = f(X.Row(m));
              W[0] += sign;
              W[1] += sign * X[m, 1];
              W[2] += sign * X[m, 2];
              k++;
            }

            //calculate P[f(Xtest) != h(Xtest)]
            DenseVector Xtest = new DenseVector(3);
            Xtest[0] = 1;
            int matches = 0;
            for (int j = 0; j < TEST_POINTS; j++)
            {
              Xtest[1] = rnd.NextDouble() * 2 - 1;
              Xtest[2] = rnd.NextDouble() * 2 - 1;
              if (f(Xtest) == h(Xtest)) matches++;
            }
            double Ppla = (matches + 0.0) / TEST_POINTS;

            //Run SVM
            var prob = new svm_problem() {
              x = Enumerable.Range(0, points).Select(j =>
            new svm_node[] {
              new svm_node() { index = 0, value = X[j, 1] },
              new svm_node() { index = 1, value = X[j, 2] } }).ToArray(),
              y = Enumerable.Range(0, points).Select(j => (double)f(X.Row(j))).ToArray(),
              l = points };

            var model = svm.svm_train(prob, new svm_parameter()
            {
              svm_type = (int)SvmType.C_SVC,
              kernel_type = (int)KernelType.LINEAR,
              C = 1000000,
              eps = 0.001,
              shrinking = 0
            });

            //calculate P[f(Xtest) != h_svm(Xtest)]
            svm_node[] Xsvm = new svm_node[] {
              new svm_node() { index = 0, value = 1.0 },
              new svm_node() { index = 1, value = 1.0 } };
            matches = 0;

            for (int j = 0; j < TEST_POINTS; j++)
            {
              Xtest[1] = rnd.NextDouble() * 2 - 1;
              Xsvm[0].value = Xtest[1];
              Xtest[2] = rnd.NextDouble() * 2 - 1;
              Xsvm[1].value = Xtest[2];
              if (f(Xtest) == (svm.svm_predict(model, Xsvm) > 0 ? 1 : -1)) matches++;
            }
            double Psvm = (matches + 0.0) / TEST_POINTS;

            svCount += model.l;
            if (Psvm >= Ppla) svmWins++;
              }

              return Tuple.Create((svmWins + 0.0) / experiments, (svCount + 0.0) / experiments);
        }
开发者ID:robinlan,项目名称:R-Study-Lists,代码行数:97,代码来源:HW7.cs

示例5: ProcessElasticCollisionWith

        /// <summary>
        /// Calculates the resulting velocities when colliding in a perfectly
        /// elastic manner with another object.
        /// </summary>
        /// <param name="otherObject">The other object that this one is colliding with.</param>
        protected void ProcessElasticCollisionWith(DEEPKinectObjectBaseClass otherObject)
        {
            /* We use the definition from Wikipedia for how to handle the collision of
             * two moving objects in vector form. See: en.wikipedia.org/wiki/Elastic_collision
             *
             * To be specific, we use instructions from www.vobarian.com/collisions/2dcollisions2.pdf */

            /* Here are the known quanitities of the situation. */
            DenseVector p1 = this.GetPosition();
            DenseVector p2 = otherObject.GetPosition();

            DenseVector v1 = this.velocity;
            DenseVector v2 = otherObject.velocity;

            double m1 = this.mass;
            double m2 = otherObject.mass;

            /* First we create a unit normal and tangent vector. */
            DenseVector n = p2 - p1;
            DenseVector un = n / n.Norm(2d);
            DenseVector ut = new DenseVector(new double[] { -un[1], un[0] });

            /* Here we find the normal and tangential components of the velocities. */
            double v1n = un.DotProduct(v1);
            double v1t = ut.DotProduct(v1);

            double v2n = un.DotProduct(v2);
            double v2t = ut.DotProduct(v2);

            /* We then apply 1-D elastic collision dynamics in the normal direction to the
             * line of collision.
             * Note that there is NO CHANGE in the tangential components of the velocity. */
            double post_v1n = (v1n * (m1 - m2) + 2 * m2 * v2n) / (m1 + m2);
            double post_v2n = (v2n * (m2 - m1) + 2 * m1 * v1n) / (m1 + m2);

            /* Now we convert the scalar normal/tangential velocities into vectors pointing
             * in the appropriate directions. */
            DenseVector vPost_v1n = post_v1n * un;
            DenseVector vPost_v1t = v1t * ut;

            DenseVector vPost_v2n = post_v2n * un;
            DenseVector vPost_v2t = v2t * ut;

            /* Calculate the post-collision velocity by adding the normal/tangential velocities
             * together. */
            DenseVector v1FinalVelocity = vPost_v1n + vPost_v1t;
            DenseVector v2FinalVelocity = vPost_v2n + vPost_v2t;

            /* Set the object's velocity to the post-collision velocity. */
            this.velocity = v1FinalVelocity;
            otherObject.velocity = v2FinalVelocity;
        }
开发者ID:marceloneil,项目名称:ProjectileMotionKinect,代码行数:57,代码来源:DEEPKinectUtilities.cs

示例6: PseudoLikelihood

        private double PseudoLikelihood(DenseVector wtest, DenseVector vtest)
        {
            double first_term = 0;
            for(int m = 0; m < TrainingInputs.Count; m++)
            {
                for(int horz = 0; horz < TrainingInputs[m].XSites; horz++)
                {
                    for(int vert = 0; vert < TrainingInputs[m].YSites; vert++)
                    {
                        int x = (int)(TrainingOutputs[m][horz,vert])*2 - 1;

                        //h_i(y):
                        DenseVector h = Transformer.Transform(TrainingInputs[m][horz,vert]);
                        first_term += MathWrapper.Log (MathWrapper.Sigma( x * wtest.DotProduct(h) ) );
                        foreach(Tuple<int,int> j in TrainingInputs[m].GetNeighbors(horz,vert))
                        {
                            int jx = (int)(TrainingOutputs[m][j.Item1,j.Item2])*2 - 1;
                            DenseVector mu;
                            if(ImageData.IsEarlier(horz,vert,j.Item1,j.Item2))mu = Crosser.Cross(TrainingInputs[m][horz,vert],TrainingInputs[m][j.Item1,j.Item2]);
                            else mu = Crosser.Cross(TrainingInputs[m][j.Item1,j.Item2], TrainingInputs[m][horz,vert]);
                            first_term += x * jx * vtest.DotProduct(mu);
                        }
                        double z = 0;
                        //Sum over possible x_i
                        for(int tempx = -1; tempx <= 1; tempx += 2)
                        {
                            double logofcoeff = MathWrapper.Log(MathWrapper.Sigma(tempx * wtest.DotProduct(h)));
                            //sum over the neighbors
                            foreach(Tuple<int,int> j in TrainingInputs[m].GetNeighbors(horz,vert))
                            {
                                int jx = (int)(TrainingOutputs[m][j.Item1,j.Item2])*2 - 1;
                                DenseVector mu;
                                if(ImageData.IsEarlier(horz,vert,j.Item1,j.Item2))mu = Crosser.Cross(TrainingInputs[m][horz,vert],TrainingInputs[m][j.Item1,j.Item2]);
                                else mu = Crosser.Cross(TrainingInputs[m][j.Item1,j.Item2], TrainingInputs[m][horz,vert]);
                                logofcoeff += tempx * jx * vtest.DotProduct(mu);
                            }
                            z += MathWrapper.Exp (logofcoeff);
                        }
                        first_term -= MathWrapper.Log(z);
                    }
                }
            }
            return first_term - vtest.DotProduct(vtest)/(2*Math.Pow(Tau,2d));
        }
开发者ID:exitmouse,项目名称:drfcsharp,代码行数:44,代码来源:ModelFactory.cs


注:本文中的MathNet.Numerics.LinearAlgebra.Double.DenseVector.DotProduct方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。