当前位置: 首页>>代码示例>>C#>>正文


C# DataTable.Resume方法代码示例

本文整理汇总了C#中Altaxo.Data.DataTable.Resume方法的典型用法代码示例。如果您正苦于以下问题:C# DataTable.Resume方法的具体用法?C# DataTable.Resume怎么用?C# DataTable.Resume使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Altaxo.Data.DataTable的用法示例。


在下文中一共展示了DataTable.Resume方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: MultiplyColumnsToMatrix

    /// <summary>
    /// Multiplies selected columns to form a matrix.
    /// </summary>
    /// <param name="mainDocument"></param>
    /// <param name="srctable"></param>
    /// <param name="selectedColumns"></param>
    /// <returns>Null if successful, else the description of the error.</returns>
    /// <remarks>The user must select an even number of columns. All columns of the first half of the selection 
    /// must have the same number of rows, and all columns of the second half of selection must also have the same
    /// number of rows. The first half of selected columns form a matrix of dimensions(firstrowcount,halfselected), and the second half
    /// of selected columns form a matrix of dimension(halfselected, secondrowcount). The resulting matrix has dimensions (firstrowcount,secondrowcount) and is
    /// stored in a separate worksheet.</remarks>
    public static string MultiplyColumnsToMatrix(
      Altaxo.AltaxoDocument mainDocument,
      Altaxo.Data.DataTable srctable,
      IAscendingIntegerCollection selectedColumns
      )
    {
      // check that there are columns selected
      if(0==selectedColumns.Count)
        return "You must select at least two columns to multiply!";
      // selected columns must contain an even number of columns
      if(0!=selectedColumns.Count%2)
        return "You selected an odd number of columns. Please select an even number of columns to multiply!";
      // all selected columns must be numeric columns
      for(int i=0;i<selectedColumns.Count;i++)
      {
        if(!(srctable[selectedColumns[i]] is Altaxo.Data.INumericColumn))
          return string.Format("The column[{0}] (name:{1}) is not a numeric column!",selectedColumns[i],srctable[selectedColumns[i]].Name);
      }


      int halfselect = selectedColumns.Count/2;
    
      // check that all columns from the first half of selected colums contain the same
      // number of rows

      int rowsfirsthalf=int.MinValue;
      for(int i=0;i<halfselect;i++)
      {
        int idx = selectedColumns[i];
        if(rowsfirsthalf<0)
          rowsfirsthalf = srctable[idx].Count;
        else if(rowsfirsthalf != srctable[idx].Count)
          return "The first half of selected columns have not all the same length!";
      }

      int rowssecondhalf=int.MinValue;
      for(int i=halfselect;i<selectedColumns.Count;i++)
      {
        int idx = selectedColumns[i];
        if(rowssecondhalf<0)
          rowssecondhalf = srctable[idx].Count;
        else if(rowssecondhalf != srctable[idx].Count)
          return "The second half of selected columns have not all the same length!";
      }


      // now create the matrices to multiply from the 

      MatrixMath.REMatrix firstMat = new MatrixMath.REMatrix(rowsfirsthalf,halfselect);
      for(int i=0;i<halfselect;i++)
      {
        Altaxo.Data.INumericColumn col = (Altaxo.Data.INumericColumn)srctable[selectedColumns[i]];
        for(int j=0;j<rowsfirsthalf;j++)
          firstMat[j,i] = col[j];
      }
      
      MatrixMath.BEMatrix secondMat = new MatrixMath.BEMatrix(halfselect,rowssecondhalf);
      for(int i=0;i<halfselect;i++)
      {
        Altaxo.Data.INumericColumn col = (Altaxo.Data.INumericColumn)srctable[selectedColumns[i+halfselect]];
        for(int j=0;j<rowssecondhalf;j++)
          secondMat[i,j] = col[j];
      }

      // now multiply the two matrices
      MatrixMath.BEMatrix resultMat = new MatrixMath.BEMatrix(rowsfirsthalf,rowssecondhalf);
      MatrixMath.Multiply(firstMat,secondMat,resultMat);


      // and store the result in a new worksheet 
      Altaxo.Data.DataTable table = new Altaxo.Data.DataTable("ResultMatrix of " + srctable.Name);
      table.Suspend();

      // first store the factors
      for(int i=0;i<resultMat.Columns;i++)
      {
        Altaxo.Data.DoubleColumn col = new Altaxo.Data.DoubleColumn();
        for(int j=0;j<resultMat.Rows;j++)
          col[j] = resultMat[j,i];
        
        table.DataColumns.Add(col,i.ToString());
      }

      table.Resume();
      mainDocument.DataTableCollection.Add(table);
      // create a new worksheet without any columns
      Current.ProjectService.CreateNewWorksheet(table);

//.........这里部分代码省略.........
开发者ID:xuchuansheng,项目名称:GenXSource,代码行数:101,代码来源:ChemometricCommands.cs

示例2: ExecuteAnalysis

    /// <summary>
    /// Makes a PLS (a partial least squares) analysis of the table or the selected columns / rows and stores the results in a newly created table.
    /// </summary>
    /// <param name="mainDocument">The main document of the application.</param>
    /// <param name="srctable">The table where the data come from.</param>
    /// <param name="selectedColumns">The selected columns.</param>
    /// <param name="selectedRows">The selected rows.</param>
    /// <param name="selectedPropertyColumns">The selected property column(s).</param>
    /// <param name="bHorizontalOrientedSpectrum">True if a spectrum is a single row, False if a spectrum is a single column.</param>
    /// <param name="plsOptions">Provides information about the max number of factors and the calculation of cross PRESS value.</param>
    /// <param name="preprocessOptions">Provides information about how to preprocess the spectra.</param>
    /// <returns></returns>
    public virtual string ExecuteAnalysis(
      Altaxo.AltaxoDocument mainDocument,
      Altaxo.Data.DataTable srctable,
      IAscendingIntegerCollection selectedColumns,
      IAscendingIntegerCollection selectedRows,
      IAscendingIntegerCollection selectedPropertyColumns,
      bool bHorizontalOrientedSpectrum,
      MultivariateAnalysisOptions plsOptions,
      SpectralPreprocessingOptions preprocessOptions
      )
    {
      IMatrix matrixX, matrixY;
      IROVector xOfX;
      MultivariateContentMemento plsContent = new MultivariateContentMemento();
      plsContent.Analysis = this;

      // now we have to create a new table where to place the calculated factors and loads
      // we will do that in a vertical oriented manner, i.e. even if the loads are
      // here in horizontal vectors: in our table they are stored in (vertical) columns
      Altaxo.Data.DataTable table = new Altaxo.Data.DataTable(this.AnalysisName + " of " + srctable.Name);
      // Fill the Table
      table.Suspend();
      table.SetTableProperty("Content",plsContent);
      plsContent.TableName = srctable.Name;

     

      // Get matrices
      GetXYMatrices(
        srctable,
        selectedColumns,
        selectedRows,
        selectedPropertyColumns,
        bHorizontalOrientedSpectrum,
        plsContent,
        out matrixX, out matrixY, out xOfX );

    

      StoreXOfX(xOfX,table);


      // Preprocess
      plsContent.SpectralPreprocessing = preprocessOptions;
      IVector meanX,scaleX,meanY,scaleY;
      MultivariateRegression.PreprocessForAnalysis(preprocessOptions,xOfX,matrixX,matrixY,
        out meanX, out scaleX, out meanY, out scaleY); 

      StorePreprocessedData(meanX,scaleX,meanY,scaleY,table);


      // Analyze and Store
      IROVector press;
      ExecuteAnalysis(
        matrixX,
        matrixY,        
        plsOptions,
        plsContent,
        table, out press);


      this.StorePRESSData(press,table);

      if(plsOptions.CrossPRESSCalculation!=CrossPRESSCalculationType.None)
        CalculateCrossPRESS(xOfX,matrixX,matrixY,plsOptions,plsContent,table);
      
      StoreFRatioData(table,plsContent);

      StoreOriginalY(table,plsContent);

      table.Resume();
      Current.Project.DataTableCollection.Add(table);
      // create a new worksheet without any columns
      Current.ProjectService.CreateNewWorksheet(table);

      return null;
    }
开发者ID:xuchuansheng,项目名称:GenXSource,代码行数:89,代码来源:WorksheetAnalysis.cs

示例3: PrincipalComponentAnalysis


//.........这里部分代码省略.........
              matrixX[j,ccol] = col[rowidx];
            }
            ++ccol;
          }
        }
      } // end if it was a horizontal oriented spectrum
      else // if it is a vertical oriented spectrum
      {
        matrixX = new MatrixMath.BEMatrix(numcols,numrows);
        int ccol = 0; // current column in the matrix
        for(int i=0;i<prenumcols;i++)
        {
          int colidx = bUseSelectedColumns ? selectedColumns[i] : i;
          Altaxo.Data.INumericColumn col = srctable[colidx] as Altaxo.Data.INumericColumn;
          if(null!=col)
          {
            for(int j=0;j<numrows;j++)
            {
              int rowidx = bUseSelectedRows ? selectedRows[j] : j;
              matrixX[ccol,j] = col[rowidx];
            }
            ++ccol;
          }
        }
      } // if it was a vertical oriented spectrum

      // now do PCA with the matrix
      MatrixMath.REMatrix factors = new MatrixMath.REMatrix(0,0);
      MatrixMath.BEMatrix loads = new MatrixMath.BEMatrix(0,0);
      MatrixMath.BEMatrix residualVariances = new MatrixMath.BEMatrix(0,0);
      MatrixMath.HorizontalVector meanX = new MatrixMath.HorizontalVector(matrixX.Columns);
      // first, center the matrix
      MatrixMath.ColumnsToZeroMean(matrixX,meanX);
      MatrixMath.NIPALS_HO(matrixX,maxNumberOfFactors,1E-9,factors,loads,residualVariances);

      // now we have to create a new table where to place the calculated factors and loads
      // we will do that in a vertical oriented manner, i.e. even if the loads are
      // here in horizontal vectors: in our table they are stored in (vertical) columns
      Altaxo.Data.DataTable table = new Altaxo.Data.DataTable("PCA of " + srctable.Name);

      // Fill the Table
      table.Suspend();

      // first of all store the meanscore
    {
      double meanScore = MatrixMath.LengthOf(meanX);
      MatrixMath.NormalizeRows(meanX);
    
      Altaxo.Data.DoubleColumn col = new Altaxo.Data.DoubleColumn();
      for(int i=0;i<factors.Rows;i++)
        col[i] = meanScore;
      table.DataColumns.Add(col,"MeanFactor",Altaxo.Data.ColumnKind.V,0);
    }

      // first store the factors
      for(int i=0;i<factors.Columns;i++)
      {
        Altaxo.Data.DoubleColumn col = new Altaxo.Data.DoubleColumn();
        for(int j=0;j<factors.Rows;j++)
          col[j] = factors[j,i];
        
        table.DataColumns.Add(col,"Factor"+i.ToString(),Altaxo.Data.ColumnKind.V,1);
      }

      // now store the mean of the matrix
    {
      Altaxo.Data.DoubleColumn col = new Altaxo.Data.DoubleColumn();
      
      for(int j=0;j<meanX.Columns;j++)
        col[j] = meanX[0,j];
      table.DataColumns.Add(col,"MeanLoad",Altaxo.Data.ColumnKind.V,2);
    }

      // now store the loads - careful - they are horizontal in the matrix
      for(int i=0;i<loads.Rows;i++)
      {
        Altaxo.Data.DoubleColumn col = new Altaxo.Data.DoubleColumn();
        
        for(int j=0;j<loads.Columns;j++)
          col[j] = loads[i,j];
        
        table.DataColumns.Add(col,"Load"+i.ToString(),Altaxo.Data.ColumnKind.V,3);
      }

      // now store the residual variances, they are vertical in the vector
    {
      Altaxo.Data.DoubleColumn col = new Altaxo.Data.DoubleColumn();
      
      for(int i=0;i<residualVariances.Rows;i++)
        col[i] = residualVariances[i,0];
      table.DataColumns.Add(col,"ResidualVariance",Altaxo.Data.ColumnKind.V,4);
    }

      table.Resume();
      mainDocument.DataTableCollection.Add(table);
      // create a new worksheet without any columns
      Current.ProjectService.CreateNewWorksheet(table);

      return null;
    }
开发者ID:xuchuansheng,项目名称:GenXSource,代码行数:101,代码来源:ChemometricCommands.cs

示例4: StatisticsOnRows


//.........这里部分代码省略.........
        return; // nothing selected

      bool bUseSelectedRows = (null!=selectedRows && 0!=selectedRows.Count);
      int numrows = bUseSelectedRows ? selectedRows.Count : srctable.DataColumns.RowCount;
      if(numrows==0)
        return;

      Altaxo.Data.DataTable table = new Altaxo.Data.DataTable();
      // add a text column and some double columns
      // note: statistics is only possible for numeric columns since
      // otherwise in one column doubles and i.e. dates are mixed, which is not possible

      // 1st column is the mean, and holds the sum during the calculation
      Data.DoubleColumn c1 = new Data.DoubleColumn();

      // 2rd column is the standard deviation, and holds the square sum during calculation
      Data.DoubleColumn c2 = new Data.DoubleColumn();

      // 3th column is the standard e (N)
      Data.DoubleColumn c3 = new Data.DoubleColumn();

      // 4th column is the sum
      Data.DoubleColumn c4 = new Data.DoubleColumn();

      // 5th column is the number of items for statistics
      Data.DoubleColumn c5 = new Data.DoubleColumn();
      
      table.DataColumns.Add(c1,"Mean");
      table.DataColumns.Add(c2,"sd");
      table.DataColumns.Add(c3,"se");
      table.DataColumns.Add(c4,"Sum");
      table.DataColumns.Add(c5,"N");

      table.Suspend();

      
      // first fill the cols c1, c2, c5 with zeros because we want to sum up 
      for(int i=0;i<numrows;i++)
      {
        c1[i]=0;
        c2[i]=0;
        c5[i]=0;
      }
  
      
      for(int si=0;si<numcols;si++)
      {
        Altaxo.Data.DataColumn col = bUseSelectedColumns ? srctable[selectedColumns[si]] : srctable[si];
        if(!(col is Altaxo.Data.INumericColumn))
          continue;

        // now do the statistics 
        Data.INumericColumn ncol = (Data.INumericColumn)col;
        for(int i=0;i<numrows;i++)
        {
          double val = bUseSelectedRows ? ncol[selectedRows[i]] : ncol[i];
          if(Double.IsNaN(val))
            continue;

          c1[i] += val;
          c2[i] += val*val;
          c5[i] += 1;
        }
      } // for all selected columns

      
      // now calculate the statistics
      for(int i=0;i<numrows;i++)
      {
        // now fill a new row in the worksheet
        double NN=c5[i];
        double sum=c1[i];
        double sumsqr=c2[i];
        if(NN>0)
        {
          double mean = c1[i]/NN;
          double ymy0sqr = sumsqr - sum*sum/NN;
          if(ymy0sqr<0) ymy0sqr=0; // if this is lesser zero, it is a rounding error, so set it to zero
          double sd = NN>1 ? Math.Sqrt(ymy0sqr/(NN-1)) : 0;
          double se = sd/Math.Sqrt(NN);

          c1[i] = mean; // mean
          c2[i] = sd;
          c3[i] = se;
          c4[i] = sum;
          c5[i] = NN;
        }
      } // for all rows
  
      // if a table was created, we add the table to the data set and
      // create a worksheet
      if(null!=table)
      {
        table.Resume();
        mainDocument.DataTableCollection.Add(table);
        // create a new worksheet without any columns
        Current.ProjectService.CreateNewWorksheet(table);

      }
    }
开发者ID:xuchuansheng,项目名称:GenXSource,代码行数:101,代码来源:StatisticCommands.cs


注:本文中的Altaxo.Data.DataTable.Resume方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。