本文整理汇总了C#中Altaxo.Data.DataTable.GetTableProperty方法的典型用法代码示例。如果您正苦于以下问题:C# DataTable.GetTableProperty方法的具体用法?C# DataTable.GetTableProperty怎么用?C# DataTable.GetTableProperty使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Altaxo.Data.DataTable
的用法示例。
在下文中一共展示了DataTable.GetTableProperty方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: GetAnalysis
public static WorksheetAnalysis GetAnalysis(DataTable table)
{
MultivariateContentMemento plsMemo = table.GetTableProperty("Content") as MultivariateContentMemento;
if(plsMemo==null)
throw new ArgumentException("Table does not contain a PLSContentMemento");
return plsMemo.Analysis;
}
示例2: GetContentAsMultivariateContentMemento
public static MultivariateContentMemento GetContentAsMultivariateContentMemento(DataTable table)
{
var result = table.GetTableProperty("Content") as MultivariateContentMemento;
return result;
}
示例3: Export
/// <summary>
/// Exports a table to a PLS2CalibrationSet
/// </summary>
/// <param name="table">The table where the calibration model is stored.</param>
/// <param name="calibrationSet"></param>
public static void Export(
DataTable table,
out PCRCalibrationModel calibrationSet)
{
int numberOfX = GetNumberOfX(table);
int numberOfY = GetNumberOfY(table);
int numberOfFactors = GetNumberOfFactors(table);
int numberOfMeasurements = GetNumberOfMeasurements(table);
calibrationSet = new PCRCalibrationModel();
calibrationSet.NumberOfX = numberOfX;
calibrationSet.NumberOfY = numberOfY;
calibrationSet.NumberOfFactors = numberOfFactors;
MultivariatePreprocessingModel preprocessSet = new MultivariatePreprocessingModel();
MultivariateContentMemento plsMemo = table.GetTableProperty("Content") as MultivariateContentMemento;
if (plsMemo != null)
preprocessSet.PreprocessOptions = plsMemo.SpectralPreprocessing;
calibrationSet.SetPreprocessingModel(preprocessSet);
Altaxo.Collections.AscendingIntegerCollection sel = new Altaxo.Collections.AscendingIntegerCollection();
Altaxo.Data.DataColumn col;
col = table.DataColumns.TryGetColumn(GetXOfX_ColumnName());
if (col == null || !(col is INumericColumn)) NotFound(GetXOfX_ColumnName());
preprocessSet.XOfX = Altaxo.Calc.LinearAlgebra.DataColumnWrapper.ToROVector((INumericColumn)col, numberOfX);
col = table.DataColumns.TryGetColumn(GetXMean_ColumnName());
if (col == null) NotFound(GetXMean_ColumnName());
preprocessSet.XMean = Altaxo.Calc.LinearAlgebra.DataColumnWrapper.ToROVector(col, numberOfX);
col = table.DataColumns.TryGetColumn(GetXScale_ColumnName());
if (col == null) NotFound(GetXScale_ColumnName());
preprocessSet.XScale = Altaxo.Calc.LinearAlgebra.DataColumnWrapper.ToROVector(col, numberOfX);
sel.Clear();
col = table.DataColumns.TryGetColumn(GetYMean_ColumnName());
if (col == null) NotFound(GetYMean_ColumnName());
sel.Add(table.DataColumns.GetColumnNumber(col));
preprocessSet.YMean = DataColumnWrapper.ToROVector(col, numberOfY);
sel.Clear();
col = table.DataColumns.TryGetColumn(GetYScale_ColumnName());
if (col == null) NotFound(GetYScale_ColumnName());
sel.Add(table.DataColumns.GetColumnNumber(col));
preprocessSet.YScale = DataColumnWrapper.ToROVector(col, numberOfY);
sel.Clear();
for (int i = 0; i < numberOfFactors; i++)
{
string colname = GetXScore_ColumnName(i);
col = table.DataColumns.TryGetColumn(colname);
if (col == null) NotFound(colname);
sel.Add(table.DataColumns.GetColumnNumber(col));
}
calibrationSet.XScores = DataTableWrapper.ToROColumnMatrix(table.DataColumns, sel, numberOfMeasurements);
sel.Clear();
for (int i = 0; i < numberOfFactors; i++)
{
string colname = GetXLoad_ColumnName(i);
col = table.DataColumns.TryGetColumn(colname);
if (col == null) NotFound(colname);
sel.Add(table.DataColumns.GetColumnNumber(col));
}
calibrationSet.XLoads = DataTableWrapper.ToRORowMatrix(table.DataColumns, sel, numberOfX);
sel.Clear();
for (int i = 0; i < numberOfY; i++)
{
string colname = GetYLoad_ColumnName(i);
col = table.DataColumns.TryGetColumn(colname);
if (col == null) NotFound(colname);
sel.Add(table.DataColumns.GetColumnNumber(col));
}
calibrationSet.YLoads = DataTableWrapper.ToROColumnMatrix(table.DataColumns, sel, numberOfMeasurements);
sel.Clear();
col = table.DataColumns.TryGetColumn(GetCrossProduct_ColumnName());
if (col == null) NotFound(GetCrossProduct_ColumnName());
calibrationSet.CrossProduct = Altaxo.Calc.LinearAlgebra.DataColumnWrapper.ToROVector(col, numberOfFactors);
}
示例4: CalculateXLeverage
/// <summary>
/// Calculates the leverage of the spectral data.
/// </summary>
/// <param name="table">Table where the calibration model is stored.</param>
/// <param name="numberOfFactors">Number of factors used to calculate leverage.</param>
public virtual void CalculateXLeverage(
DataTable table, int numberOfFactors)
{
MultivariateContentMemento plsMemo = table.GetTableProperty("Content") as MultivariateContentMemento;
if(plsMemo==null)
throw new ArgumentException("Table does not contain a PLSContentMemento");
IMultivariateCalibrationModel calib = this.GetCalibrationModel(table);
IMatrix matrixX = GetRawSpectra(plsMemo);
MultivariateRegression.PreprocessSpectraForPrediction(calib,plsMemo.SpectralPreprocessing,matrixX);
MultivariateRegression regress = this.CreateNewRegressionObject();
regress.SetCalibrationModel(calib);
IROMatrix xLeverage = regress.GetXLeverageFromRaw(matrixX,numberOfFactors);
for(int i=0;i<xLeverage.Columns;i++)
{
Altaxo.Data.DoubleColumn col = new Altaxo.Data.DoubleColumn();
MatrixMath.SetColumn(xLeverage,i,DataColumnWrapper.ToVertMatrix(col,xLeverage.Rows),0);
table.DataColumns.Add(
col,
xLeverage.Columns==1 ? GetXLeverage_ColumnName(numberOfFactors) : GetXLeverage_ColumnName(i,numberOfFactors),
Altaxo.Data.ColumnKind.V,GetXLeverage_ColumnGroup());
}
}
示例5: PredictValues
/// <summary>
/// This predicts the selected columns/rows against a user choosen calibration model.
/// The orientation of spectra is given by the parameter <c>spectrumIsRow</c>.
/// </summary>
/// <param name="srctable">Table holding the specta to predict values for.</param>
/// <param name="selectedColumns">Columns selected in the source table.</param>
/// <param name="selectedRows">Rows selected in the source table.</param>
/// <param name="destTable">The table to store the prediction result.</param>
/// <param name="modelTable">The table where the calibration model is stored.</param>
/// <param name="numberOfFactors">Number of factors used to predict the values.</param>
/// <param name="spectrumIsRow">If true, the spectra is horizontally oriented, else it is vertically oriented.</param>
public virtual void PredictValues(
DataTable srctable,
IAscendingIntegerCollection selectedColumns,
IAscendingIntegerCollection selectedRows,
bool spectrumIsRow,
int numberOfFactors,
DataTable modelTable,
DataTable destTable)
{
IMultivariateCalibrationModel calibModel = GetCalibrationModel(modelTable);
// Export(modelTable, out calibModel);
MultivariateContentMemento memento = modelTable.GetTableProperty("Content") as MultivariateContentMemento;
// Fill matrixX with spectra
Altaxo.Collections.AscendingIntegerCollection spectralIndices;
Altaxo.Collections.AscendingIntegerCollection measurementIndices;
spectralIndices = new Altaxo.Collections.AscendingIntegerCollection(selectedColumns);
measurementIndices = new Altaxo.Collections.AscendingIntegerCollection(selectedRows);
RemoveNonNumericCells(srctable,measurementIndices,spectralIndices);
// exchange selection if spectrum is column
if(!spectrumIsRow)
{
Altaxo.Collections.AscendingIntegerCollection hlp;
hlp = spectralIndices;
spectralIndices = measurementIndices;
measurementIndices = hlp;
}
// if there are more data than expected, we have to map the spectral indices
if(spectralIndices.Count>calibModel.NumberOfX)
{
double[] xofx = GetXOfSpectra(srctable,spectrumIsRow,spectralIndices,measurementIndices);
string errormsg;
AscendingIntegerCollection map = MapSpectralX(calibModel.PreprocessingModel.XOfX,VectorMath.ToROVector(xofx),out errormsg);
if(map==null)
throw new ApplicationException("Can not map spectral data: " + errormsg);
else
{
AscendingIntegerCollection newspectralindices = new AscendingIntegerCollection();
for(int i=0;i<map.Count;i++)
newspectralindices.Add(spectralIndices[map[i]]);
spectralIndices = newspectralindices;
}
}
IMatrix matrixX = GetRawSpectra(srctable,spectrumIsRow,spectralIndices,measurementIndices);
MatrixMath.BEMatrix predictedY = new MatrixMath.BEMatrix(measurementIndices.Count,calibModel.NumberOfY);
CalculatePredictedY(calibModel,memento.SpectralPreprocessing,matrixX,numberOfFactors, predictedY,null);
// now save the predicted y in the destination table
Altaxo.Data.DoubleColumn labelCol = new Altaxo.Data.DoubleColumn();
for(int i=0;i<measurementIndices.Count;i++)
{
labelCol[i] = measurementIndices[i];
}
destTable.DataColumns.Add(labelCol,"MeasurementLabel",Altaxo.Data.ColumnKind.Label,0);
for(int k=0;k<predictedY.Columns;k++)
{
Altaxo.Data.DoubleColumn predictedYcol = new Altaxo.Data.DoubleColumn();
for(int i=0;i<measurementIndices.Count;i++)
{
predictedYcol[i] = predictedY[i,k];
}
destTable.DataColumns.Add(predictedYcol,"Predicted Y" + k.ToString(), Altaxo.Data.ColumnKind.V,0);
}
}
示例6: CalculatePredictedAndResidual
public virtual void CalculatePredictedAndResidual(
DataTable table,
int whichY,
int numberOfFactors,
bool saveYPredicted,
bool saveYResidual,
bool saveXResidual)
{
MultivariateContentMemento plsMemo = table.GetTableProperty("Content") as MultivariateContentMemento;
if(plsMemo==null)
throw new ArgumentException("Table does not contain a PLSContentMemento");
IMultivariateCalibrationModel calib = GetCalibrationModel(table);
// Export(table,out calib);
IMatrix matrixX = GetRawSpectra(plsMemo);
MatrixMath.BEMatrix predictedY = new MatrixMath.BEMatrix(matrixX.Rows,calib.NumberOfY);
MatrixMath.BEMatrix spectralResiduals = new MatrixMath.BEMatrix(matrixX.Rows,1);
CalculatePredictedY(calib,plsMemo.SpectralPreprocessing,matrixX,numberOfFactors,predictedY,spectralResiduals);
if(saveYPredicted)
{
// insert a column with the proper name into the table and fill it
string ycolname = GetYPredicted_ColumnName(whichY,numberOfFactors);
Altaxo.Data.DoubleColumn ycolumn = new Altaxo.Data.DoubleColumn();
for(int i=0;i<predictedY.Rows;i++)
ycolumn[i] = predictedY[i,whichY];
table.DataColumns.Add(ycolumn,ycolname,Altaxo.Data.ColumnKind.V,GetYPredicted_ColumnGroup());
}
// subract the original y data
IMatrix matrixY = GetOriginalY(plsMemo);
MatrixMath.SubtractColumn(predictedY,matrixY,whichY,predictedY);
if(saveYResidual)
{
// insert a column with the proper name into the table and fill it
string ycolname = GetYResidual_ColumnName(whichY,numberOfFactors);
Altaxo.Data.DoubleColumn ycolumn = new Altaxo.Data.DoubleColumn();
for(int i=0;i<predictedY.Rows;i++)
ycolumn[i] = predictedY[i,whichY];
table.DataColumns.Add(ycolumn,ycolname,Altaxo.Data.ColumnKind.V,GetYResidual_ColumnGroup());
}
if(saveXResidual)
{
// insert a column with the proper name into the table and fill it
string ycolname = GetXResidual_ColumnName(whichY,numberOfFactors);
Altaxo.Data.DoubleColumn ycolumn = new Altaxo.Data.DoubleColumn();
for(int i=0;i<matrixX.Rows;i++)
{
ycolumn[i] = spectralResiduals[i,0];
}
table.DataColumns.Add(ycolumn,ycolname,Altaxo.Data.ColumnKind.V,GetXResidual_ColumnGroup());
}
}