本文整理汇总了C#中State.IsGameOver方法的典型用法代码示例。如果您正苦于以下问题:C# State.IsGameOver方法的具体用法?C# State.IsGameOver怎么用?C# State.IsGameOver使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类State
的用法示例。
在下文中一共展示了State.IsGameOver方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: ExpectimaxAlgorithm
// Classic Expectimax search
public Move ExpectimaxAlgorithm(State state, int depth, WeightVector weights)
{
Move bestMove;
if (depth == 0 || state.IsGameOver())
{
if (state.Player == GameEngine.PLAYER)
{
bestMove = new PlayerMove(); // dummy action, as there will be no valid move
bestMove.Score = AI.EvaluateWithWeights(state, weights);
return bestMove;
}
else if (state.Player == GameEngine.COMPUTER)
{
bestMove = new ComputerMove(); // dummy action, as there will be no valid move
bestMove.Score = AI.EvaluateWithWeights(state, weights);
return bestMove;
}
else throw new Exception();
}
if (state.Player == GameEngine.PLAYER) // AI's turn
{
bestMove = new PlayerMove();
double highestScore = Double.MinValue, currentScore = Double.MinValue;
List<Move> moves = state.GetMoves();
foreach (Move move in moves)
{
State resultingState = state.ApplyMove(move);
currentScore = ExpectimaxAlgorithm(resultingState, depth - 1, weights).Score;
if (currentScore > highestScore)
{
highestScore = currentScore;
bestMove = move;
}
}
bestMove.Score = highestScore;
return bestMove;
}
else if (state.Player == GameEngine.COMPUTER) // computer's turn (the random event node)
{
bestMove = new ComputerMove();
// return the weighted average of all the child nodes's scores
double average = 0;
List<Cell> availableCells = state.GetAvailableCells();
List<Move> moves = state.GetAllComputerMoves(availableCells);
foreach (Move move in moves)
{
State resultingState = state.ApplyMove(move);
average += StateProbability(((ComputerMove)move).Tile) * ExpectimaxAlgorithm(resultingState, depth - 1, weights).Score;
}
bestMove.Score = average / moves.Count;
return bestMove;
}
else throw new Exception();
}
示例2: MinimaxAlgorithm
// Standard Minimax search with no pruning
Move MinimaxAlgorithm(State state, int depth)
{
Move bestMove;
if (depth == 0 || state.IsGameOver())
{
if (state.Player == GameEngine.PLAYER)
{
bestMove = new PlayerMove();
bestMove.Score = AI.Evaluate(state);
return bestMove;
}
else if (state.Player == GameEngine.COMPUTER)
{
bestMove = new ComputerMove();
bestMove.Score = AI.Evaluate(state);
return bestMove;
}
else throw new Exception();
}
if (state.Player == GameEngine.PLAYER)
{
bestMove = new PlayerMove();
double highestScore = Double.MinValue, currentScore = Double.MinValue;
List<Move> moves = state.GetMoves();
foreach (Move move in moves)
{
State resultingState = state.ApplyMove(move);
currentScore = MinimaxAlgorithm(resultingState, depth - 1).Score;
if (currentScore > highestScore)
{
highestScore = currentScore;
bestMove = move;
}
}
bestMove.Score = highestScore;
return bestMove;
}
else if (state.Player == GameEngine.COMPUTER)
{
bestMove = new ComputerMove();
double lowestScore = Double.MaxValue, currentScore = Double.MaxValue;
List<Move> moves = state.GetMoves();
foreach (Move move in moves)
{
State resultingState = state.ApplyMove(move);
currentScore = MinimaxAlgorithm(resultingState, depth - 1).Score;
if (currentScore < lowestScore)
{
lowestScore = currentScore;
bestMove = move;
}
}
bestMove.Score = lowestScore;
return bestMove;
}
else throw new Exception();
}
示例3: IterativeDeepeningAlphaBeta
// recursive part of the minimax algorithm when used in iterative deepening search
// checks at each recursion if timeLimit has been reached
// if is has, it cuts of the search and returns the best move found so far, along with a boolean indicating that the search was not fully completed
private Tuple<Move, Boolean> IterativeDeepeningAlphaBeta(State state, int depth, double alpha, double beta, double timeLimit, Stopwatch timer)
{
Move bestMove;
if (depth == 0 || state.IsGameOver())
{
if (state.Player == GameEngine.PLAYER)
{
bestMove = new PlayerMove(); // dummy action, as there will be no valid move
bestMove.Score = AI.Evaluate(state);
return new Tuple<Move, Boolean>(bestMove, true);
}
else if (state.Player == GameEngine.COMPUTER)
{
bestMove = new ComputerMove(); // dummy action, as there will be no valid move
bestMove.Score = AI.Evaluate(state);
return new Tuple<Move, Boolean>(bestMove, true);
}
else throw new Exception();
}
if (state.Player == GameEngine.PLAYER) // AI's turn
{
bestMove = new PlayerMove();
double highestScore = Double.MinValue, currentScore = Double.MinValue;
List<Move> moves = state.GetMoves();
foreach (Move move in moves)
{
State resultingState = state.ApplyMove(move);
currentScore = IterativeDeepeningAlphaBeta(resultingState, depth - 1, alpha, beta, timeLimit, timer).Item1.Score;
if (currentScore > highestScore)
{
highestScore = currentScore;
bestMove = move;
}
alpha = Math.Max(alpha, highestScore);
if (beta <= alpha)
{ // beta cut-off
break;
}
if (timer.ElapsedMilliseconds > timeLimit)
{
bestMove.Score = highestScore;
return new Tuple<Move, Boolean>(bestMove, false); // recursion not completed, return false
}
}
bestMove.Score = highestScore;
return new Tuple<Move, Boolean>(bestMove, true);
}
else if (state.Player == GameEngine.COMPUTER) // computer's turn (the random event node)
{
bestMove = new ComputerMove();
double lowestScore = Double.MaxValue, currentScore = Double.MaxValue;
List<Move> moves = state.GetMoves();
foreach (Move move in moves)
{
State resultingState = state.ApplyMove(move);
currentScore = IterativeDeepeningAlphaBeta(resultingState, depth - 1, alpha, beta, timeLimit, timer).Item1.Score;
if (currentScore < lowestScore)
{
lowestScore = currentScore;
bestMove = move;
}
beta = Math.Min(beta, lowestScore);
if (beta <= alpha)
break;
if (timer.ElapsedMilliseconds > timeLimit)
{
bestMove.Score = lowestScore;
return new Tuple<Move, Boolean>(bestMove, false); // recursion not completed, return false
}
}
bestMove.Score = lowestScore;
return new Tuple<Move, Boolean>(bestMove, true);
}
else throw new Exception();
}
示例4: AlphaBeta
// runs minimax with alpha beta pruning
Move AlphaBeta(State state, int depth, double alpha, double beta)
{
Move bestMove;
if (depth == 0 || state.IsGameOver())
{
if (state.Player == GameEngine.PLAYER)
{
bestMove = new PlayerMove();
bestMove.Score = AI.Evaluate(state);
return bestMove;
}
else if (state.Player == GameEngine.COMPUTER)
{
bestMove = new ComputerMove();
bestMove.Score = AI.Evaluate(state);
return bestMove;
}
else throw new Exception();
}
if (state.Player == GameEngine.PLAYER)
return Max(state, depth, alpha, beta);
else
return Min(state, depth, alpha, beta);
}
示例5: EvaluateWithWeights
// Evaluation function
public static double EvaluateWithWeights(State state, WeightVector weights)
{
if (state.IsGameOver()) return GetLowerBound(weights) - 10;
else
{
double corner = 0, emptycells = 0, highestvalue = 0, monotonicity = 0, points = 0, smoothness = 0, snake = 0, trappedpenalty = 0;
// Only do the heuristic calculation if the weight is not 0 (avoid unnescessary work)
if(((WeightVectorAll)weights).Corner != 0) corner = Corner(state);
if(((WeightVectorAll)weights).Empty_cells != 0) emptycells = EmptyCells(state);
if(((WeightVectorAll)weights).Highest_tile != 0) highestvalue = HighestValue(state);
if(((WeightVectorAll)weights).Monotonicity != 0) monotonicity = Monotonicity(state);
if(((WeightVectorAll)weights).Points != 0) points = Points(state);
if(((WeightVectorAll)weights).Smoothness != 0) smoothness = Smoothness(state);
if(((WeightVectorAll)weights).Snake != 0) snake = WeightSnake(state);
if(((WeightVectorAll)weights).Trapped_penalty != 0) trappedpenalty = TrappedPenalty(state);
// evaluation function is a linear combination of heuristic values and their weights
double eval = ((WeightVectorAll)weights).Corner * corner + ((WeightVectorAll)weights).Empty_cells * emptycells + ((WeightVectorAll)weights).Highest_tile * highestvalue
+ ((WeightVectorAll)weights).Monotonicity * monotonicity + ((WeightVectorAll)weights).Points * points + ((WeightVectorAll)weights).Smoothness * smoothness
+ ((WeightVectorAll)weights).Snake * snake - ((WeightVectorAll)weights).Trapped_penalty * trappedpenalty;
if (state.IsWin())
{
return eval + 10;
}
else return eval;
}
}
示例6: Evaluate
// Simple evaluation function only using Snake heuristic
public static double Evaluate(State state)
{
if (state.IsGameOver())
{
return -1000;
}
else
{
double eval = WeightSnake(state);
if (state.IsWin())
return eval + 1000;
else
{
return eval;
}
}
}
示例7: TimeLimitedMCTS
// Starts the time limited Monte Carlo Tree Search and returns the best child node
// resulting from the search
public Node TimeLimitedMCTS(State rootState, int timeLimit)
{
Stopwatch timer = new Stopwatch();
Node bestNode = null;
while (bestNode == null && !rootState.IsGameOver())
{
timer.Start();
Node rootNode = TimeLimited(rootState, timeLimit, timer);
bestNode = FindBestChild(rootNode.Children);
timeLimit += 10;
timer.Reset();
}
return bestNode;
}
示例8: RecursiveIterativeDeepeningExpectimaxWithStar1
// Recursive part of iterative deepening Expectimax with star 1 pruning
private Tuple<Move, Boolean> RecursiveIterativeDeepeningExpectimaxWithStar1(State state, double alpha, double beta, int depth,
int timeLimit, Stopwatch timer, WeightVector weights)
{
Move bestMove;
if (depth == 0 || state.IsGameOver())
{
if (state.Player == GameEngine.PLAYER)
{
bestMove = new PlayerMove(); // dummy action, as there will be no valid move
bestMove.Score = AI.EvaluateWithWeights(state, weights);
return new Tuple<Move, Boolean>(bestMove, true);
}
else if (state.Player == GameEngine.COMPUTER)
{
bestMove = new ComputerMove(); // dummy action, as there will be no valid move
bestMove.Score = AI.EvaluateWithWeights(state, weights);
return new Tuple<Move, Boolean>(bestMove, true); ;
}
else throw new Exception();
}
if (state.Player == GameEngine.PLAYER)
{
bestMove = new PlayerMove();
double highestScore = Double.MinValue, currentScore = Double.MinValue;
List<Move> moves = state.GetMoves();
foreach (Move move in moves)
{
State resultingState = state.ApplyMove(move);
currentScore = RecursiveIterativeDeepeningExpectimaxWithStar1(resultingState, alpha, beta, depth - 1, timeLimit, timer, weights).Item1.Score;
if (currentScore > highestScore)
{
highestScore = currentScore;
bestMove = move;
}
alpha = Math.Max(alpha, highestScore);
if (beta <= alpha)
{ // beta cut-off
break;
}
if (timer.ElapsedMilliseconds > timeLimit)
{
bestMove.Score = highestScore;
return new Tuple<Move, Boolean>(bestMove, false); // recursion not completed, return false
}
}
bestMove.Score = highestScore;
return new Tuple<Move, Boolean>(bestMove, true);
}
else if (state.Player == GameEngine.COMPUTER) // computer's turn (the random event node)
{
bestMove = new ComputerMove();
List<Cell> availableCells = state.GetAvailableCells();
List<Move> moves = state.GetAllComputerMoves(availableCells);
int numSuccessors = moves.Count;
double upperBound = AI.GetUpperBound(weights);
double lowerBound = AI.GetLowerBound(weights);
double curAlpha = numSuccessors * (alpha - upperBound) + upperBound;
double curBeta = numSuccessors * (beta - lowerBound) + lowerBound;
double scoreSum = 0;
int i = 1;
foreach (Move move in moves)
{
double sucAlpha = Math.Max(curAlpha, lowerBound);
double sucBeta = Math.Min(curBeta, upperBound);
State resultingState = state.ApplyMove(move);
double score = StateProbability(((ComputerMove)move).Tile) *
RecursiveIterativeDeepeningExpectimaxWithStar1(resultingState, sucAlpha, sucBeta, depth - 1, timeLimit, timer, weights).Item1.Score;
scoreSum += score;
if (score <= curAlpha)
{
scoreSum += upperBound * (numSuccessors - i);
bestMove.Score = scoreSum / numSuccessors;
return new Tuple<Move, Boolean>(bestMove, true); // pruning
}
if (score >= curBeta)
{
scoreSum += lowerBound * (numSuccessors - i);
bestMove.Score = scoreSum / numSuccessors;
return new Tuple<Move, Boolean>(bestMove, true); // pruning
}
if (timer.ElapsedMilliseconds > timeLimit)
{
bestMove.Score = scoreSum / i;
return new Tuple<Move, Boolean>(bestMove, false); // recursion not completed, return false
}
curAlpha += upperBound - score;
curBeta += lowerBound - score;
i++;
//.........这里部分代码省略.........
示例9: Probe
// Star2 probing
private double Probe(State state, double alpha, double beta, int depth, WeightVector weights)
{
if (depth == 0 || state.IsGameOver())
{
return AI.Evaluate(state);
}
else
{
State choice = PickSuccessor(state);
return Star2Expectimax(choice, alpha, beta, depth - 1, weights).Score;
}
}
示例10: IterativeDeepeningExpectimax
// Recursive part of iterative deepening Expectimax
private Tuple<Move, Boolean> IterativeDeepeningExpectimax(State state, int depth, double timeLimit, Stopwatch timer, WeightVector weights)
{
Move bestMove;
if (depth == 0 || state.IsGameOver())
{
if (state.Player == GameEngine.PLAYER)
{
bestMove = new PlayerMove(); // dummy action, as there will be no valid move
bestMove.Score = AI.EvaluateWithWeights(state, weights);
return new Tuple<Move, Boolean>(bestMove, true);
}
else if (state.Player == GameEngine.COMPUTER)
{
bestMove = new ComputerMove(); // dummy action, as there will be no valid move
bestMove.Score = AI.EvaluateWithWeights(state, weights);
return new Tuple<Move, Boolean>(bestMove, true);
}
else throw new Exception();
}
if (state.Player == GameEngine.PLAYER) // AI's turn
{
bestMove = new PlayerMove();
double highestScore = Double.MinValue, currentScore = Double.MinValue;
List<Move> moves = state.GetMoves();
foreach (Move move in moves)
{
State resultingState = state.ApplyMove(move);
currentScore = IterativeDeepeningExpectimax(resultingState, depth - 1, timeLimit, timer, weights).Item1.Score;
if (currentScore > highestScore)
{
highestScore = currentScore;
bestMove = move;
}
if (timer.ElapsedMilliseconds > timeLimit)
{
bestMove.Score = highestScore;
return new Tuple<Move, Boolean>(bestMove, false); // recursion not completed, return false
}
}
bestMove.Score = highestScore;
return new Tuple<Move, Boolean>(bestMove, true);
}
else if (state.Player == GameEngine.COMPUTER) // computer's turn (the random event node)
{
bestMove = new ComputerMove();
// return the weighted average of all the child nodes's scores
double average = 0;
List<Cell> availableCells = state.GetAvailableCells();
List<Move> moves = state.GetAllComputerMoves(availableCells);
int moveCheckedSoFar = 0;
foreach (Move move in moves)
{
State resultingState = state.ApplyMove(move);
average += StateProbability(((ComputerMove)move).Tile) * IterativeDeepeningExpectimax(resultingState, depth - 1, timeLimit, timer, weights).Item1.Score;
moveCheckedSoFar++;
if (timer.ElapsedMilliseconds > timeLimit)
{
bestMove.Score = average / moveCheckedSoFar;
return new Tuple<Move, Boolean>(bestMove, false); // recursion not completed, return false
}
}
bestMove.Score = average / moves.Count;
return new Tuple<Move, Boolean>(bestMove, true);
}
else throw new Exception();
}
示例11: Star2Expectimax
// Expectimax with Star2 pruning
// NB: DO NOT USE - way too slow
private Move Star2Expectimax(State state, double alpha, double beta, int depth, WeightVector weights)
{
Move bestMove;
if (depth == 0 || state.IsGameOver())
{
if (state.Player == GameEngine.PLAYER)
{
bestMove = new PlayerMove(); // dummy action, as there will be no valid move
bestMove.Score = AI.Evaluate(state);
return bestMove;
}
else if (state.Player == GameEngine.COMPUTER)
{
bestMove = new ComputerMove(); // dummy action, as there will be no valid move
bestMove.Score = AI.Evaluate(state);
return bestMove;
}
else throw new Exception();
}
if (state.Player == GameEngine.PLAYER)
{
bestMove = new PlayerMove();
double highestScore = Double.MinValue, currentScore = Double.MinValue;
List<Move> moves = state.GetMoves();
foreach (Move move in moves)
{
State resultingState = state.ApplyMove(move);
currentScore = Star2Expectimax(resultingState, alpha, beta, depth - 1, weights).Score;
if (currentScore > highestScore)
{
highestScore = currentScore;
bestMove = move;
}
alpha = Math.Max(alpha, highestScore);
if (beta <= alpha)
{ // beta cut-off
break;
}
}
bestMove.Score = highestScore;
return bestMove;
}
else if (state.Player == GameEngine.COMPUTER) // computer's turn (the random event node)
{
bestMove = new ComputerMove();
List<Cell> availableCells = state.GetAvailableCells();
List<Move> moves = state.GetAllComputerMoves(availableCells);
int numSuccessors = moves.Count;
double upperBound = AI.GetUpperBound(weights);
double lowerBound = AI.GetLowerBound(weights);
double curAlpha = numSuccessors * (alpha - upperBound);
double curBeta = numSuccessors * (beta - lowerBound);
double sucAlpha = Math.Max(curAlpha, lowerBound);
double[] probeValues = new double[numSuccessors];
// probing phase
double vsum = 0;
int i = 1;
foreach (Move move in moves)
{
curBeta += lowerBound;
double sucBeta = Math.Min(curBeta, upperBound);
State resultingState = state.ApplyMove(move);
probeValues[i - 1] = Probe(resultingState, sucAlpha, sucBeta, depth - 1, weights);
vsum += probeValues[i - 1];
if (probeValues[i - 1] >= curBeta)
{
vsum += lowerBound * (numSuccessors - i);
bestMove.Score = vsum / numSuccessors;
return bestMove; // pruning
}
curBeta -= probeValues[i - 1];
i++;
}
// search phase
vsum = 0;
i = 1;
foreach (Move move in moves)
{
curAlpha += upperBound;
curBeta += probeValues[i - 1];
sucAlpha = Math.Max(curAlpha, lowerBound);
double sucBeta = Math.Min(curBeta, upperBound);
State resultingState = state.ApplyMove(move);
double score = StateProbability(((ComputerMove)move).Tile) * Star2Expectimax(resultingState, sucAlpha, sucBeta, depth - 1, weights).Score;
vsum += score;
if (score <= curAlpha)
//.........这里部分代码省略.........
示例12: Star1WithUnlikelyPruning
// Expectimax search with Star1 pruning and forward pruning
private Move Star1WithUnlikelyPruning(State state, double alpha, double beta, int depth, int lastSpawn, WeightVector weights)
{
Move bestMove;
if (depth == 0 || state.IsGameOver())
{
if (state.Player == GameEngine.PLAYER)
{
bestMove = new PlayerMove(); // dummy action, as there will be no valid move
bestMove.Score = AI.EvaluateWithWeights(state, weights);
return bestMove;
}
else if (state.Player == GameEngine.COMPUTER)
{
bestMove = new ComputerMove(); // dummy action, as there will be no valid move
bestMove.Score = AI.EvaluateWithWeights(state, weights);
return bestMove;
}
else throw new Exception();
}
if (state.Player == GameEngine.PLAYER)
{
bestMove = new PlayerMove();
double highestScore = Double.MinValue, currentScore = Double.MinValue;
List<Move> moves = state.GetMoves();
foreach (Move move in moves)
{
State resultingState = state.ApplyMove(move);
currentScore = Star1WithUnlikelyPruning(resultingState, alpha, beta, depth - 1, lastSpawn, weights).Score;
if (currentScore > highestScore)
{
highestScore = currentScore;
bestMove = move;
}
alpha = Math.Max(alpha, highestScore);
if (beta <= alpha)
{ // beta cut-off
break;
}
}
bestMove.Score = highestScore;
return bestMove;
}
else if (state.Player == GameEngine.COMPUTER) // computer's turn (the random event node)
{
bestMove = new ComputerMove();
List<Cell> availableCells = state.GetAvailableCells();
List<Move> moves = state.GetAllComputerMoves(availableCells);
int numSuccessors = moves.Count;
double upperBound = AI.GetUpperBound(weights);
double lowerBound = AI.GetLowerBound(weights);
double curAlpha = numSuccessors * (alpha - upperBound) + upperBound;
double curBeta = numSuccessors * (beta - lowerBound) + lowerBound;
double scoreSum = 0;
int i = 1;
foreach (Move move in moves)
{
int value = ((ComputerMove)move).Tile;
if (value == 4 && lastSpawn == 4) continue; // unlikely event pruning (2 4-spawns in sequence only has 1% chance)
double sucAlpha = Math.Max(curAlpha, lowerBound);
double sucBeta = Math.Min(curBeta, upperBound);
State resultingState = state.ApplyMove(move);
double score = StateProbability(((ComputerMove)move).Tile) * Star1WithUnlikelyPruning(resultingState, sucAlpha, sucBeta, depth - 1, value, weights).Score;
scoreSum += score;
if (score <= curAlpha)
{
scoreSum += upperBound * (numSuccessors - i);
bestMove.Score = scoreSum / numSuccessors;
return bestMove; // pruning
}
if (score >= curBeta)
{
scoreSum += lowerBound * (numSuccessors - i);
bestMove.Score = scoreSum / numSuccessors;
return bestMove; // pruning
}
curAlpha += upperBound - score;
curBeta += lowerBound - score;
i++;
}
bestMove.Score = scoreSum / numSuccessors;
return bestMove;
}
else throw new Exception();
}
示例13: RecursiveTTStar1
// Recursive part of ^^ iterative deepening Expectimax with Star1, move ordering and transposition table
private Tuple<Move, Boolean> RecursiveTTStar1(State state, double alpha, double beta, int depth, double timeLimit, Stopwatch timer, WeightVector weights)
{
Move bestMove;
if (depth == 0 || state.IsGameOver())
{
if (state.Player == GameEngine.PLAYER)
{
bestMove = new PlayerMove(); // dummy action, as there will be no valid move
bestMove.Score = AI.EvaluateWithWeights(state, weights);
return new Tuple<Move, Boolean>(bestMove, true);
}
else if (state.Player == GameEngine.COMPUTER)
{
bestMove = new ComputerMove(); // dummy action, as there will be no valid move
bestMove.Score = AI.EvaluateWithWeights(state, weights);
return new Tuple<Move, Boolean>(bestMove, true);
}
else throw new Exception();
}
if (state.Player == GameEngine.PLAYER) // AI's turn
{
DIRECTION bestDirection = (DIRECTION)(-1);
bestMove = new PlayerMove();
double highestScore = Double.MinValue, currentScore = Double.MinValue;
// transposition table look-up
long zob_hash = GetHash(state);
if (transposition_table.ContainsKey(zob_hash) && transposition_table[zob_hash].depth > depth)
{
Move move = new PlayerMove(transposition_table[zob_hash].direction);
move.Score = transposition_table[zob_hash].value;
return new Tuple<Move, Boolean>(move, true);
}
// move ordering - make sure we first check the move we believe to be best based on earlier searches
else if (transposition_table.ContainsKey(zob_hash))
{
bestDirection = transposition_table[zob_hash].direction;
State resultingState = state.ApplyMove(new PlayerMove(bestDirection));
currentScore = RecursiveTTStar1(resultingState, alpha, beta, depth - 1, timeLimit, timer, weights).Item1.Score;
if (currentScore > highestScore)
{
highestScore = currentScore;
bestMove = new PlayerMove(bestDirection);
}
if (timer.ElapsedMilliseconds > timeLimit)
{
bestMove.Score = highestScore;
return new Tuple<Move, Boolean>(bestMove, false); // recursion not completed, return false
}
}
// now check the rest of moves
List<Move> moves = state.GetMoves();
foreach (Move move in moves)
{
if (((PlayerMove)move).Direction != bestDirection)
{
State resultingState = state.ApplyMove(move);
currentScore = RecursiveTTStar1(resultingState, alpha, beta, depth - 1, timeLimit, timer, weights).Item1.Score;
if (currentScore > highestScore)
{
highestScore = currentScore;
bestMove = move;
}
alpha = Math.Max(alpha, highestScore);
if (beta <= alpha)
{ // beta cut-off
break;
}
if (timer.ElapsedMilliseconds > timeLimit)
{
bestMove.Score = highestScore;
return new Tuple<Move, Boolean>(bestMove, false); // recursion not completed, return false
}
}
}
bestMove.Score = highestScore;
// add result to transposition table
TableRow row = new TableRow((short)depth, ((PlayerMove)bestMove).Direction, bestMove.Score);
transposition_table.AddOrUpdate(zob_hash, row, (key, oldValue) => row);
return new Tuple<Move, Boolean>(bestMove, true);
}
else if (state.Player == GameEngine.COMPUTER) // computer's turn (the random event node)
{
bestMove = new ComputerMove();
int moveCheckedSoFar = 0;
List<Cell> availableCells = state.GetAvailableCells();
List<Move> moves = state.GetAllComputerMoves(availableCells);
int numSuccessors = moves.Count;
double upperBound = AI.GetUpperBound(weights);
double lowerBound = AI.GetLowerBound(weights);
double curAlpha = numSuccessors * (alpha - upperBound) + upperBound;
//.........这里部分代码省略.........
示例14: RecursiveTTExpectimax
// Recursive part of iterative deepening Expectimax with transposition table
private Tuple<Move, Boolean> RecursiveTTExpectimax(State state, int depth, double timeLimit, Stopwatch timer, WeightVector weights)
{
Move bestMove;
if (depth == 0 || state.IsGameOver())
{
if (state.Player == GameEngine.PLAYER)
{
bestMove = new PlayerMove(); // dummy action, as there will be no valid move
bestMove.Score = AI.EvaluateWithWeights(state, weights);
return new Tuple<Move, Boolean>(bestMove, true);
}
else if (state.Player == GameEngine.COMPUTER)
{
bestMove = new ComputerMove(); // dummy action, as there will be no valid move
bestMove.Score = AI.EvaluateWithWeights(state, weights);
return new Tuple<Move, Boolean>(bestMove, true);
}
else throw new Exception();
}
if (state.Player == GameEngine.PLAYER) // AI's turn
{
// transposition table look-up
long zob_hash = GetHash(state);
if (transposition_table.ContainsKey(zob_hash) && transposition_table[zob_hash].depth > depth)
{
Move move = new PlayerMove(transposition_table[zob_hash].direction);
move.Score = transposition_table[zob_hash].value;
return new Tuple<Move, Boolean>(move, true);
}
bestMove = new PlayerMove();
double highestScore = Double.MinValue, currentScore = Double.MinValue;
List<Move> moves = state.GetMoves();
foreach (Move move in moves)
{
State resultingState = state.ApplyMove(move);
currentScore = RecursiveTTExpectimax(resultingState, depth - 1, timeLimit, timer, weights).Item1.Score;
if (currentScore > highestScore)
{
highestScore = currentScore;
bestMove = move;
}
if (timer.ElapsedMilliseconds > timeLimit)
{
bestMove.Score = highestScore;
return new Tuple<Move, Boolean>(bestMove, false); // recursion not completed, return false
}
}
bestMove.Score = highestScore;
// add result to transposition table
TableRow row = new TableRow((short)depth, ((PlayerMove)bestMove).Direction, bestMove.Score);
transposition_table.AddOrUpdate(zob_hash, row, (key, oldValue) => row);
return new Tuple<Move, Boolean>(bestMove, true);
}
else if (state.Player == GameEngine.COMPUTER) // computer's turn (the random event node)
{
bestMove = new ComputerMove();
// return the weighted average of all the child nodes's scores
double average = 0;
List<Cell> availableCells = state.GetAvailableCells();
List<Move> moves = state.GetAllComputerMoves(availableCells);
int moveCheckedSoFar = 0;
foreach (Move move in moves)
{
State resultingState = state.ApplyMove(move);
average += StateProbability(((ComputerMove)move).Tile) * RecursiveTTExpectimax(resultingState, depth - 1, timeLimit, timer, weights).Item1.Score;
moveCheckedSoFar++;
if (timer.ElapsedMilliseconds > timeLimit)
{
bestMove.Score = average / moveCheckedSoFar;
return new Tuple<Move, Boolean>(bestMove, false); // recursion not completed, return false
}
}
bestMove.Score = average / moves.Count;
return new Tuple<Move, Boolean>(bestMove, true);
}
else throw new Exception();
}