当前位置: 首页>>代码示例>>C#>>正文


C# Solver.Start方法代码示例

本文整理汇总了C#中Solver.Start方法的典型用法代码示例。如果您正苦于以下问题:C# Solver.Start方法的具体用法?C# Solver.Start怎么用?C# Solver.Start使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Solver的用法示例。


在下文中一共展示了Solver.Start方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: SolveBackPackProblemWith16RandomItems

        public void SolveBackPackProblemWith16RandomItems()
        {
            const int tests = 10;

            double bfFitness = 0.0;
            double gsFitness = 0.0;

            for (int n = 0; n < tests; n++)
            {
                var backPack = new BackPack(2000);
                var items = BackPackEnvironmentTest.RandomItems(16, backPack.Volume, 200);

                var environment = new BackPackEnvironment(backPack, items, 100);

                var solver = new Solver<BackPackIndividual>(environment);
                solver.Start(() => solver.CurrentGeneration > 10);

                var bf = BruteForce(environment);
                var gs = solver.CurrentOptimum;

                Console.WriteLine(environment.RateFitness(bf));
                Console.WriteLine(environment.RateFitness(gs));

                bfFitness += environment.RateFitness(bf);
                gsFitness += environment.RateFitness(gs);
            }
            // Should be atleast 90% of BF'ed fitness
            Console.WriteLine(gsFitness / bfFitness);
            Assert.IsTrue(bfFitness * 0.9 
                <= gsFitness);

        }
开发者ID:yannicst,项目名称:Yannic.AI.Genetic,代码行数:32,代码来源:BackPackGeneticSolverTest.cs

示例2: DoSolve

        /// <summary>
        /// Solves the problem using a GA.
        /// </summary>
        /// <param name="problem"></param>
        /// <returns></returns>
        protected override IRoute DoSolve(OsmSharp.Tools.Math.TSP.Problems.IProblem problem)
        {
            //int population_size = 10;
            //if (problem.Size < 100)
            //{
            //    population_size = System.Math.Max(problem.Size * 3, 10);
            //    if (problem.Size < 10)
            //    {
            //        population_size = 1;
            //    }
            //}
            //if (problem.Size < 1000)
            //{
            //    population_size = problem.Size / 4;
            //}

            // create the settings.
            SolverSettings settings = new SolverSettings(
                _stagnation_count,
                _population,
                1000000000,
                _eltism,
                _cross,
                _mutation);

            //List<IMutationOperation<List<int>, GeneticProblem, Fitness>> mutators = new List<IMutationOperation<int,GeneticProblem,Fitness>>();
            ////mutators.Add(new DefaultMutationOperation());
            ////mutators.Add(new BestPlacementMutationOperation());
            //mutators.Add(new BestDetailedPlacementMutationOperation());
            //List<double> probabilities = new List<double>();
            //probabilities.Add(1);
            ////probabilities.Add(0.5);
            ////probabilities.Add(0.3);

            //CombinedMutation<List<int>, GeneticProblem, Fitness> mutation = new CombinedMutation<int,GeneticProblem,Fitness>(
            //    StaticRandomGenerator.Get(),
            //    mutators,
            //    probabilities);

            ////SequentialContructiveCrossoverOperator cross_over = new SequentialContructiveCrossoverOperator();
            //BestDetailedPlacementCrossOverOperation cross_over = new BestDetailedPlacementCrossOverOperation();
            ////BestPlacementCrossOverOperation cross_over = new BestPlacementCrossOverOperation();
            ////EdgeRecombinationCrossOverOperation cross_over = new EdgeRecombinationCrossOverOperation();

            //BestPlacementGenerationOperation generation = new BestPlacementGenerationOperation();
            ////RandomGenerationOperation generation = new RandomGenerationOperation();
            ISelector<List<int>, GeneticProblem, Fitness> selector = new RandomSelector<List<int>, GeneticProblem, Fitness>();
            //ISelector<List<int>, GeneticProblem, Fitness> selector = new TournamentBasedSelector<List<int>, GeneticProblem, Fitness>(75, 0.01);
            solver =
                new Solver<List<int>, GeneticProblem, Fitness>(
                    new GeneticProblem(problem),
                    settings,
                    selector,
                    _mutation_operation,
                    _cross_over_operation,
                    _generation_operation,
                    new FitnessCalculator(),
                    true, false);

            solver.NewFittest += new Solver<List<int>, GeneticProblem, Fitness>.NewFittestDelegate(solver_NewFittest);
            solver.NewGeneration += new Solver<List<int>, GeneticProblem, Fitness>.NewGenerationDelegate(solver_NewGeneration);
            List<int> result = new List<int>(solver.Start(null).Genomes);
            result.Insert(0, 0);
            return new SimpleAsymmetricRoute(result, true);
        }
开发者ID:jorik041,项目名称:osmsharp,代码行数:70,代码来源:GeneticSolver.cs

示例3: SolveBackPackProblemWith512RandomItems

        public void SolveBackPackProblemWith512RandomItems()
        {
            var backPack = new BackPack(2000);
            var items = BackPackEnvironmentTest.RandomItems(512, backPack.Volume, 100);

            var environment = new BackPackEnvironment(backPack, items, individualCountAtStart: 100);

            var solver = new Solver<BackPackIndividual>(environment);

            double previous = 0;
            int c = 0;
            Func<bool> terminationCondition = () =>
                {
                    if (solver.CurrentGeneration > 10)
                    {
                        double current = environment.RateFitness(solver.CurrentOptimum);
                        if (previous != current)
                        {
                            previous = current;
                            c = 0;
                        }
                        else
                        {
                            c++;
                            if (c > 3)
                            {
                                return true;
                            }
                        }
                    }
                    return false;
                };

            solver.Start(terminationCondition);

        }
开发者ID:yannicst,项目名称:Yannic.AI.Genetic,代码行数:36,代码来源:BackPackGeneticSolverTest.cs

示例4: Main

		public static void Main(string[] args)
		{
            const int backPackVolume = 2000;
            const int highestItemVolume = backPackVolume;
            const int highestItemValue = 100;
            const int itemCount = 512;
            const int individualCountAtStart = 100;

            List<BackPackItem> randomItems = RandomItems(itemCount, highestItemVolume, highestItemValue);

			for (int i = 0; i < randomItems.Count; i++)
			{
				BackPackItem item = randomItems[i];
				Console.WriteLine("\n" + (i + 1));
				Console.WriteLine("Value: " + item.Value + "\n" + "Volume: " + item.Volume + "\n\n");
			}


            BackPackEnvironment environment = new BackPackEnvironment(new BackPack(backPackVolume), randomItems, individualCountAtStart);


			Stopwatch stopwatch = new Stopwatch();

			stopwatch.Start();

			double previous = 0;
			int c = 0;
            Solver<BackPackIndividual> solver = new Solver<BackPackIndividual>(environment);
            Func<bool> terminationCondition = () =>
				{
					if (solver.CurrentGeneration > 10)
					{
						double current = environment.RateFitness(solver.CurrentOptimum);
						if (previous != current)
						{
							previous = current;
							c = 0;
						}
						else
						{
							c++;
							if (c > 3)
							{
								return true;
							}
						}
					}
					return false;
				};

            solver.Start(terminationCondition);

			stopwatch.Stop();

			double gsNeeded = stopwatch.ElapsedMilliseconds;

			Console.WriteLine("Genetic Solver Needed: " + gsNeeded + "ms");

			BackPackIndividual fittest = solver.CurrentOptimum;

			Console.WriteLine("Optimum: " + fittest);

			Console.WriteLine("Optimum-Fitness: " + environment.RateFitness(fittest));
		}
开发者ID:yannicst,项目名称:Yannic.AI.Genetic,代码行数:64,代码来源:Program.cs

示例5: Solve

        /// <summary>
        /// Executes a solver procedure.
        /// </summary>
        /// <param name="problem"></param>
        /// <returns></returns>
        internal override MaxTimeSolution Solve(MaxTimeProblem problem)
        {
            //            _customers = problem.Customers;

            //float[] solutions = OsmSharp.Math.VRP.Core.BestPlacement.CheapestInsertionHelper.CalculateBestValues(
            //    problem, _customers);

            generations = 0;

            _max_generations = 10000000;

            // calculate one tsp solution.
            //Tools.Math.TSP.ISolver tsp_solver = new OsmSharp.Math.TSP.EdgeAssemblyGenetic.EdgeAssemblyCrossOverSolver(_population, _stagnation,
            //         new OsmSharp.Math.TSP.Genetic.Solver.Operations.Generation._3OptGenerationOperation(),
            //          new OsmSharp.Math.TSP.Genetic.Solver.Operations.CrossOver.EdgeAssemblyCrossover(30,
            //                 OsmSharp.Math.TSP.Genetic.Solver.Operations.CrossOver.EdgeAssemblyCrossover.EdgeAssemblyCrossoverSelectionStrategyEnum.SingleRandom,
            //                 true));
            //IRoute tsp_solution = tsp_solver.Solve(new OsmSharp.Routing.VRP.NoDepot.MaxTime.TSPPlacement.TSPProblem(
            //    problem));
            // initialize the generation.
            IGenerationOperation<MaxTimeSolution, MaxTimeProblem, Fitness> generation =
                //new SolverGenerationOperation(new TSPPlacement.TSPPlacementSolver<ResolvedType>(
                //    this.Router, this.Max, this.DeliveryTime, tsp_solution));
                new OsmSharp.Routing.VRP.NoDepot.MaxTime.Genetic.Generation.RandomBestPlacement();
            //new SolverGenerationOperation(new CheapestInsertionSolverWithImprovements<ResolvedType>(
            //    this.Router, this.Max, this.DeliveryTime, 5, 0.1f, true, 0.1f, false, 1f, null, null));
            //new SolverGenerationOperation(new CheapestInsertionSolverWithImprovements<ResolvedType>(
            //    this.Router, this.Max, this.DeliveryTime, 5, 0.1f, true, 0.1f, true, 1f));

            // initialize the crossover.
            ICrossOverOperation<MaxTimeSolution, MaxTimeProblem, Fitness> cross_over =
                new OsmSharp.Routing.VRP.NoDepot.MaxTime.Genetic.CrossOver.RouteExchangeOperation();

            // initialize the mutation.
            //IMutationOperation<MaxTimeSolution, MaxTimeProblem, Fitness> mutation =
            //    new VehicleMutation();

            List<IMutationOperation<MaxTimeSolution, MaxTimeProblem, Fitness>> mutators =
                new List<IMutationOperation<MaxTimeSolution, MaxTimeProblem, Fitness>>();
            mutators.Add(new VehicleMutation());
            //mutators.Add(new ThreeOptMutation());
            //mutators.Add(new RedivideRouteMutation());
            mutators.Add(new RoutePartExchangeMutation());
            if (_probabilities == null)
            {
                _probabilities = new List<double>();
                _probabilities.Add(0.2);
                _probabilities.Add(0.6);
                _probabilities.Add(0.2);
            }

            CombinedMutation<MaxTimeSolution, MaxTimeProblem, Fitness> mutation = new CombinedMutation<MaxTimeSolution, MaxTimeProblem, Fitness>(
                StaticRandomGenerator.Get(),
                mutators,
                _probabilities);

            SolverSettings settings = new SolverSettings(_stagnation, _population, _max_generations,
                _elitism_percentage, _cross_percentage, _mutation_percentage);
            MaxTimeProblem genetic_problem = problem;// new MaxTimeProblem(max,  problem, solutions);
            Solver<MaxTimeSolution, MaxTimeProblem, Fitness> solver =
                new Solver<MaxTimeSolution, MaxTimeProblem, Fitness>(genetic_problem, settings,
                new TournamentBasedSelector<MaxTimeSolution, MaxTimeProblem, Fitness>(5, 0.5),
                mutation, //new ThreeOptMutation(),
                cross_over, // new RouteExchangeOperation(), //new RouteExchangeOperation(), //new RouteExchangeAndVehicleOperation(), // Order1CrossoverOperation()
                generation, //new RandomBestPlacement(),//new RandomGeneration(), //new RandomBestPlacement(),
                new FitnessCalculator());
            solver.NewFittest += new Solver<MaxTimeSolution, MaxTimeProblem, Fitness>.NewFittestDelegate(solver_NewFittest);
            //solver.NewGeneration += new Solver<MaxTimeSolution, Problem, Fitness>.NewGenerationDelegate(solver_NewGeneration);
            Individual<MaxTimeSolution, MaxTimeProblem, Fitness> solution = solver.Start(null);
            //this.solver_NewFittest(solution);

            MaxTimeSolution routes = solution.Genomes;

            long ticks_after = DateTime.Now.Ticks;

            StringBuilder sizes = new StringBuilder();
            foreach (int size in routes.Sizes)
            {
                sizes.Append(size);
                sizes.Append(" ");
            }

            StringBuilder weights = new StringBuilder();
            foreach (double weight in solution.Fitness.Weights)
            {
                weights.Append(weight.ToString(CultureInfo.InvariantCulture));
                weights.Append(" ");
            }

            return routes;
        }
开发者ID:OpenMaps,项目名称:OsmSharp,代码行数:96,代码来源:RouterGeneticSimple.cs


注:本文中的Solver.Start方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。