本文整理汇总了C#中Solver.MakeSearchLog方法的典型用法代码示例。如果您正苦于以下问题:C# Solver.MakeSearchLog方法的具体用法?C# Solver.MakeSearchLog怎么用?C# Solver.MakeSearchLog使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Solver
的用法示例。
在下文中一共展示了Solver.MakeSearchLog方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: Solve
/**
*
* Golomb Ruler problem.
*
* This C# implementation is based on Charles Prud'homme's
* or-tools/Java model:
* http://code.google.com/p/or-tools/source/browse/trunk/com/google/ortools/constraintsolver/samples/GolombRuler.java
*
*/
private static void Solve(int m = 8)
{
Solver solver = new Solver("GolombRuler");
//
// Decision variables
//
IntVar[] ticks = solver.MakeIntVarArray(m,
0,
((m < 31) ? (1 << (m + 1)) - 1 : 9999),
"ticks");
IntVar[] diff = new IntVar[(m * m - m) / 2];
//
// Constraints
//
solver.Add(ticks[0] == 0);
for(int i = 0; i < ticks.Length - 1; i++) {
solver.Add(ticks[i] < ticks[i+1]);
}
for (int k = 0, i = 0; i < m - 1; i++) {
for (int j = i + 1; j < m; j++, k++) {
diff[k] = (ticks[j]-ticks[i]).Var();
solver.Add(diff[k] >= (j - i) * (j - i + 1) / 2);
}
}
solver.Add(diff.AllDifferent());
// break symetries
if (m > 2) {
solver.Add(diff[0] < diff[diff.Length - 1]);
}
//
// Optimization
//
OptimizeVar opt = ticks[m - 1].Minimize(1);
//
// Search
//
DecisionBuilder db = solver.MakePhase(ticks,
Solver.CHOOSE_MIN_SIZE_LOWEST_MIN,
Solver.ASSIGN_MIN_VALUE);
// We just want the debug info for larger instances.
if (m >= 11) {
SearchMonitor log = solver.MakeSearchLog(10000, opt);
solver.NewSearch(db, opt, log);
} else {
solver.NewSearch(db, opt);
}
while (solver.NextSolution()) {
Console.Write("opt: {0} [ ", ticks[m-1].Value());
for(int i = 0; i < m; i++) {
Console.Write("{0} ", ticks[i].Value());
}
Console.WriteLine("]");
}
Console.WriteLine("\nSolutions: {0}", solver.Solutions());
Console.WriteLine("WallTime: {0}ms", solver.WallTime());
Console.WriteLine("Failures: {0}", solver.Failures());
Console.WriteLine("Branches: {0} ", solver.Branches());
solver.EndSearch();
}
示例2: BasicLsWithFilter
private static void BasicLsWithFilter()
{
Console.WriteLine("BasicLsWithFilter");
Solver solver = new Solver("BasicLs");
IntVar[] vars = solver.MakeIntVarArray(4, 0, 4, "vars");
IntVar sum_var = vars.Sum().Var();
OptimizeVar obj = sum_var.Minimize(1);
DecisionBuilder db = solver.MakePhase(vars,
Solver.CHOOSE_FIRST_UNBOUND,
Solver.ASSIGN_MAX_VALUE);
MoveOneVar move_one_var = new MoveOneVar(vars);
SumFilter filter = new SumFilter(vars);
IntVarLocalSearchFilter[] filters =
new IntVarLocalSearchFilter[] { filter };
LocalSearchPhaseParameters ls_params =
solver.MakeLocalSearchPhaseParameters(move_one_var, db, null, filters);
DecisionBuilder ls = solver.MakeLocalSearchPhase(vars, db, ls_params);
SolutionCollector collector = solver.MakeLastSolutionCollector();
collector.AddObjective(sum_var);
SearchMonitor log = solver.MakeSearchLog(1000, obj);
solver.Solve(ls, collector, obj, log);
Console.WriteLine("Objective value = {0}", collector.ObjectiveValue(0));
}
示例3: Solve
/**
*
* This is a port of Charles Prud'homme's Java model
* Partition.java
* """
* Partition n numbers into two groups, so that
* - the sum of the first group equals the sum of the second,
* - and the sum of the squares of the first group equals the sum of
* the squares of the second
* """
*
*/
private static void Solve(int m)
{
Solver solver = new Solver("Partition");
//
// Decision variables
//
IntVar[] x = solver.MakeIntVarArray(m, 1, 2 * m, "x");
IntVar[] y = solver.MakeIntVarArray(m, 1, 2 * m, "y");
//
// Constraints
//
// break symmetries
for (int i = 0; i < m - 1; i++) {
solver.Add(x[i] < x[i + 1]);
solver.Add(y[i] < y[i + 1]);
}
solver.Add(x[0] < y[0]);
IntVar[] xy = new IntVar[2 * m];
for (int i = m - 1; i >= 0; i--) {
xy[i] = x[i];
xy[m + i] = y[i];
}
solver.Add(xy.AllDifferent());
int[] coeffs = new int[2 * m];
for (int i = m - 1; i >= 0; i--) {
coeffs[i] = 1;
coeffs[m + i] = -1;
}
solver.Add(xy.ScalProd(coeffs) == 0);
IntVar[] sxy, sx, sy;
sxy = new IntVar[2 * m];
sx = new IntVar[m];
sy = new IntVar[m];
for (int i = m - 1; i >= 0; i--) {
sx[i] = x[i].Square().Var();
sxy[i] = sx[i];
sy[i] = y[i].Square().Var();
sxy[m + i] = sy[i];
}
solver.Add(sxy.ScalProd(coeffs) == 0);
solver.Add(x.Sum() == 2 * m * (2 * m + 1) / 4);
solver.Add(y.Sum() == 2 * m * (2 * m + 1) / 4);
solver.Add(sx.Sum() == 2 * m * (2 * m + 1) * (4 * m + 1) / 12);
solver.Add(sy.Sum() == 2 * m * (2 * m + 1) * (4 * m + 1) / 12);
//
// Search
//
DecisionBuilder db = solver.MakeDefaultPhase(xy);
SearchMonitor log = solver.MakeSearchLog(10000);
solver.NewSearch(db, log);
while (solver.NextSolution()) {
for(int i = 0; i < m; i++) {
Console.Write("[" + xy[i].Value() + "] ");
}
Console.WriteLine();
for(int i = 0; i < m; i++) {
Console.Write("[" + xy[m+i].Value() + "] ");
}
Console.WriteLine("\n");
}
Console.WriteLine("\nSolutions: {0}", solver.Solutions());
Console.WriteLine("WallTime: {0}ms", solver.WallTime());
Console.WriteLine("Failures: {0}", solver.Failures());
Console.WriteLine("Branches: {0} ", solver.Branches());
solver.EndSearch();
}
示例4: Solve
//.........这里部分代码省略.........
for(int day = 0; day < num_days; day++) {
IntVar[] nurses = new IntVar[num_nurses];
for(int nurse = 0; nurse < num_nurses; nurse++) {
nurses[nurse] = x[nurse, day];
}
IntVar[] stats = new IntVar[num_shifts];
for (int shift = 0; shift < num_shifts; ++shift)
{
stats[shift] = day_stat[day, shift];
}
solver.Add(nurses.Distribute(stats));
//
// Some constraints for each day:
//
// Note: We have a strict requirements of
// the number of shifts.
// Using atleast constraints is harder
// in this model.
//
if (day % 7 == 5 || day % 7 == 6) {
// special constraints for the weekends
solver.Add(day_stat[day, day_shift] == 2 * nurse_multiplier);
solver.Add(day_stat[day, night_shift] == nurse_multiplier);
solver.Add(day_stat[day, off_shift] == 4 * nurse_multiplier);
} else {
// for workdays:
// - exactly 3 on day shift
solver.Add(day_stat[day, day_shift] == 3 * nurse_multiplier);
// - exactly 2 on night
solver.Add(day_stat[day, night_shift] == 2 * nurse_multiplier);
// - exactly 2 off duty
solver.Add(day_stat[day, off_shift] == 2 * nurse_multiplier);
}
}
//
// Search
//
DecisionBuilder db = solver.MakePhase(x_flat,
Solver.CHOOSE_FIRST_UNBOUND,
Solver.ASSIGN_MIN_VALUE);
SearchMonitor log = solver.MakeSearchLog(1000000);
solver.NewSearch(db, log);
int num_solutions = 0;
while (solver.NextSolution()) {
num_solutions++;
for(int i = 0; i < num_nurses; i++) {
Console.Write("Nurse #{0,-2}: ", i);
var occ = new Dictionary<int, int>();
for(int j = 0; j < num_days; j++) {
int v = (int)x[i,j].Value()-1;
if (!occ.ContainsKey(v)) {
occ[v] = 0;
}
occ[v]++;
Console.Write(days[v] + " ");
}
Console.Write(" #workdays: {0,2}", nurse_stat[i].Value());
foreach(int s in valid_shifts) {
int v = 0;
if (occ.ContainsKey(s-1)) {
v = occ[s-1];
}
Console.Write(" {0}:{1}", days[s-1], v);
}
Console.WriteLine();
}
Console.WriteLine();
Console.WriteLine("Statistics per day:\nDay d n o");
for(int j = 0; j < num_days; j++) {
Console.Write("Day #{0,2}: ", j);
foreach(int t in valid_shifts) {
Console.Write(day_stat[j,t].Value() + " ");
}
Console.WriteLine();
}
Console.WriteLine();
// We just show 2 solutions
if (num_solutions > 1) {
break;
}
}
Console.WriteLine("\nSolutions: {0}", solver.Solutions());
Console.WriteLine("WallTime: {0}ms", solver.WallTime());
Console.WriteLine("Failures: {0}", solver.Failures());
Console.WriteLine("Branches: {0} ", solver.Branches());
solver.EndSearch();
}