本文整理汇总了C#中Set.addAll方法的典型用法代码示例。如果您正苦于以下问题:C# Set.addAll方法的具体用法?C# Set.addAll怎么用?C# Set.addAll使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Set
的用法示例。
在下文中一共展示了Set.addAll方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: getMarkovBlanket
public Set<Node> getMarkovBlanket()
{
Set<Node> mb = new Set<Node>();
// Given its parents,
mb.addAll(getParents());
// children,
mb.addAll(getChildren());
// and children's parents
foreach (Node cn in getChildren())
{
mb.addAll(cn.getParents());
}
return mb;
}
示例2: DynamicBayesNet
public DynamicBayesNet(BayesianNetwork priorNetwork,
Map<RandomVariable, RandomVariable> X_0_to_X_1,
Set<RandomVariable> E_1, params Node[] rootNodes)
: base(rootNodes)
{
foreach (RandomVariable rv in X_0_to_X_1.keySet()
)
{
RandomVariable x0 = rv;
RandomVariable x1 = X_0_to_X_1[rv];
this.X_0.add(x0);
this.X_1.add(x1);
this.X_0_to_X_1.put(x0, x1);
this.X_1_to_X_0.put(x1, x0);
}
this.E_1.addAll(new List<RandomVariable>(E_1));
// Assert the X_0, X_1, and E_1 sets are of expected sizes
Set<RandomVariable> combined = new Set<RandomVariable>();
combined.addAll(new List<RandomVariable>(X_0));
combined.addAll(new List<RandomVariable>(X_1));
combined.addAll(new List<RandomVariable>(E_1));
if (
SetOps.difference(new List<RandomVariable>(varToNodeMap.keySet()), new List<RandomVariable>(combined)).
Count != 0)
{
throw new IllegalArgumentException(
"X_0, X_1, and E_1 do not map correctly to the Nodes describing this Dynamic Bayesian Network.");
}
this.priorNetwork = priorNetwork;
X_1_VariablesInTopologicalOrder
.AddRange(getVariablesInTopologicalOrder());
X_1_VariablesInTopologicalOrder.RemoveAll(X_0);
X_1_VariablesInTopologicalOrder.RemoveAll(E_1);
}
示例3: calculateVariables
// END-BayesInference
//
//
// PROTECTED METHODS
//
/**
* <b>Note:</b>Override this method for a more efficient implementation as
* outlined in AIMA3e pgs. 527-28. Calculate the hidden variables from the
* Bayesian Network. The default implementation does not perform any of
* these.<br>
* <br>
* Two calcuations to be performed here in order to optimize iteration over
* the Bayesian Network:<br>
* 1. Calculate the hidden variables to be enumerated over. An optimization
* (AIMA3e pg. 528) is to remove 'every variable that is not an ancestor of
* a query variable or evidence variable as it is irrelevant to the query'
* (i.e. sums to 1). 2. The subset of variables from the Bayesian Network to
* be retained after irrelevant hidden variables have been removed.
*
* @param X
* the query variables.
* @param e
* observed values for variables E.
* @param bn
* a Bayes net with variables {X} ∪ E ∪ Y /* Y = hidden
* variables //
* @param hidden
* to be populated with the relevant hidden variables Y.
* @param bnVARS
* to be populated with the subset of the random variables
* comprising the Bayesian Network with any irrelevant hidden
* variables removed.
*/
protected void calculateVariables(RandomVariable[] X,
AssignmentProposition[] e, BayesianNetwork bn,
Set<RandomVariable> hidden, List<RandomVariable> bnVARS)
{
bnVARS.AddRange(bn.getVariablesInTopologicalOrder());
hidden.addAll(bnVARS);
foreach (RandomVariable x in X)
{
hidden.remove(x);
}
foreach (AssignmentProposition ap in e)
{
hidden.removeAll(ap.getScope());
}
return;
}