本文整理汇总了C#中Segment.GetBoundingRectangle方法的典型用法代码示例。如果您正苦于以下问题:C# Segment.GetBoundingRectangle方法的具体用法?C# Segment.GetBoundingRectangle怎么用?C# Segment.GetBoundingRectangle使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Segment
的用法示例。
在下文中一共展示了Segment.GetBoundingRectangle方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: getRelatedSegments
private List<SplittedSegment> getRelatedSegments(Segment segment)
{
List<SplittedSegment> result = new List<SplittedSegment>();
if (_splittedSegmentIndex != null)
_splittedSegmentIndex.QueryObjectsInRectangle(segment.GetBoundingRectangle(), result);
else
{
int startIndex = 0;
int endIndex = _splittedSegments.Count - 1;
double v2x = segment.V2.X;
double v1x = segment.V1.X;
double tolerance = PlanimetryAlgorithms.Tolerance;
while (endIndex - startIndex > 1)
{
int index = startIndex + (endIndex - startIndex) / 2;
if (_splittedSegments[index].Segment.V1.X > v2x)
endIndex = index;
else
startIndex = index;
}
while (endIndex < _splittedSegments.Count - 1 &&
_splittedSegments[endIndex].Segment.V1.X < v2x + tolerance)
endIndex++;
for (int i = endIndex; i >= 0; i--)
{
if (_splittedSegments[i].Segment.V2.X + tolerance < v1x ||
_splittedSegments[i].Segment.V1.X - tolerance > v2x)
continue;
result.Add(_splittedSegments[i]);
}
}
return result;
}
示例2: checkWeightedVertex
private bool checkWeightedVertex(Polyline polyline, KDTree vertexIndex, SDMinVertex currentVertex, KDTree crossPointIndex)
{
// probably not an internal vertex
if (currentVertex.Previous == null || currentVertex.Next == null)
return true;
// top with infinite weight ("do not remove")
if (double.IsPositiveInfinity(currentVertex.Weight))
return true;
SDMinVertex previous = currentVertex.Previous;
SDMinVertex next = currentVertex.Next;
// One of the segments formed by the vertex in question may be one of the intersection points.
// If so, you can not remove the top, as point of self-intersection, it may be removed.
Segment s1 = new Segment(pointOfWeightedVertex(polyline, currentVertex),
pointOfWeightedVertex(polyline, previous));
Segment s2 = new Segment(pointOfWeightedVertex(polyline, currentVertex),
pointOfWeightedVertex(polyline, next));
List<SDMinCrossPoint> crossPoints = new List<SDMinCrossPoint>();
crossPointIndex.QueryObjectsInRectangle(s1.GetBoundingRectangle(), crossPoints);
crossPointIndex.QueryObjectsInRectangle(s2.GetBoundingRectangle(), crossPoints);
foreach (SDMinCrossPoint point in crossPoints)
{
if (PlanimetryAlgorithms.LiesOnSegment(point.Point, s1))
{
currentVertex.IsCrossSegmentVertex = true;
currentVertex.Previous.IsCrossSegmentVertex = true;
return false;
}
if(PlanimetryAlgorithms.LiesOnSegment(point.Point, s2))
{
currentVertex.IsCrossSegmentVertex = true;
currentVertex.Next.IsCrossSegmentVertex = true;
return false;
}
}
//One of the polyline vertices can belong to a triangle,
//the apex of which is considered the top. In this case,
//the top can not be deleted because will be a new point of self-intersection.
Polygon triangle = new Polygon(new ICoordinate[] { pointOfWeightedVertex(polyline, previous),
pointOfWeightedVertex(polyline, currentVertex),
pointOfWeightedVertex(polyline, next) });
List<SDMinVertex> vertices = new List<SDMinVertex>();
vertexIndex.QueryObjectsInRectangle<SDMinVertex>(triangle.GetBoundingRectangle(), vertices);
foreach (SDMinVertex vertex in vertices)
{
ICoordinate p = pointOfWeightedVertex(polyline, vertex);
//point should not be the top of the triangle
if (p.ExactEquals(triangle.Contours[0].Vertices[0]) ||
p.ExactEquals(triangle.Contours[0].Vertices[1]) ||
p.ExactEquals(triangle.Contours[0].Vertices[2]))
continue;
if (triangle.ContainsPoint(p))
return false;
}
return true;
}