本文整理汇总了C#中Population.RankAgentArray方法的典型用法代码示例。如果您正苦于以下问题:C# Population.RankAgentArray方法的具体用法?C# Population.RankAgentArray怎么用?C# Population.RankAgentArray使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Population
的用法示例。
在下文中一共展示了Population.RankAgentArray方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: BreedPopulation
public Population BreedPopulation(ref Population sourcePopulation, int currentGeneration) {
#region Pre-Crossover, Figuring out how many agents to breed etc.
int LifetimeGeneration = currentGeneration + sourcePopulation.trainingGenerations;
int totalNumWeightMutations = 0;
//float totalWeightChangeValue = 0f;
// go through species list and adjust fitness
List<SpeciesBreedingPool> childSpeciesPoolsList = new List<SpeciesBreedingPool>(); // will hold agents in an internal list to facilitate crossover
for (int s = 0; s < sourcePopulation.speciesBreedingPoolList.Count; s++) {
SpeciesBreedingPool newChildSpeciesPool = new SpeciesBreedingPool(sourcePopulation.speciesBreedingPoolList[s].templateGenome, sourcePopulation.speciesBreedingPoolList[s].speciesID); // create Breeding Pools
// copies the existing breeding pools but leaves their agentLists empty for future children
childSpeciesPoolsList.Add(newChildSpeciesPool); // Add to list of pools
}
sourcePopulation.RankAgentArray(); // based on modified species fitness score, so compensated for species sizes
Agent[] newAgentArray = new Agent[sourcePopulation.masterAgentArray.Length];
// Calculate total fitness score:
float totalScore = 0f;
if (survivalByRaffle) {
for (int a = 0; a < sourcePopulation.populationMaxSize; a++) { // iterate through all agents
totalScore += sourcePopulation.masterAgentArray[a].fitnessScoreSpecies;
}
}
// Figure out How many Agents survive
int numSurvivors = Mathf.RoundToInt(survivalRate * (float)sourcePopulation.populationMaxSize);
//Depending on method, one at a time, select an Agent to survive until the max Number is reached
int newChildIndex = 0;
// For ( num Agents ) {
for (int i = 0; i < numSurvivors; i++) {
// If survival is by fitness score ranking:
if (survivalByRank) {
// Pop should already be ranked, so just traverse from top (best) to bottom (worst)
newAgentArray[newChildIndex] = sourcePopulation.masterAgentArray[newChildIndex];
SpeciesBreedingPool survivingAgentBreedingPool = sourcePopulation.GetBreedingPoolByID(childSpeciesPoolsList, newAgentArray[newChildIndex].speciesID);
survivingAgentBreedingPool.AddNewAgent(newAgentArray[newChildIndex]);
//SortNewAgentIntoSpecies(newAgentArray[newChildIndex], childSpeciesList); // sorts this surviving agent into next generation's species'
newChildIndex++;
}
// if survival is completely random, as a control:
if (survivalStochastic) {
int randomAgent = UnityEngine.Random.Range(0, numSurvivors - 1);
// Set next newChild slot to a randomly-chosen agent within the survivor faction -- change to full random?
newAgentArray[newChildIndex] = sourcePopulation.masterAgentArray[randomAgent];
SpeciesBreedingPool survivingAgentBreedingPool = sourcePopulation.GetBreedingPoolByID(childSpeciesPoolsList, newAgentArray[newChildIndex].speciesID);
survivingAgentBreedingPool.AddNewAgent(newAgentArray[newChildIndex]);
//SortNewAgentIntoSpecies(newAgentArray[newChildIndex], childSpeciesList); // sorts this surviving agent into next generation's species'
newChildIndex++;
}
// if survival is based on a fitness lottery:
if (survivalByRaffle) { // Try when Fitness is normalized from 0-1
float randomSlicePosition = UnityEngine.Random.Range(0f, totalScore);
float accumulatedFitness = 0f;
for (int a = 0; a < sourcePopulation.populationMaxSize; a++) { // iterate through all agents
accumulatedFitness += sourcePopulation.masterAgentArray[a].fitnessScoreSpecies;
// if accum fitness is on slicePosition, copy this Agent
//Debug.Log("NumSurvivors: " + numSurvivors.ToString() + ", Surviving Agent " + a.ToString() + ": AccumFitness: " + accumulatedFitness.ToString() + ", RafflePos: " + randomSlicePosition.ToString() + ", TotalScore: " + totalScore.ToString() + ", newChildIndex: " + newChildIndex.ToString());
if (accumulatedFitness >= randomSlicePosition) {
newAgentArray[newChildIndex] = sourcePopulation.masterAgentArray[a]; // add to next gen's list of agents
SpeciesBreedingPool survivingAgentBreedingPool = sourcePopulation.GetBreedingPoolByID(childSpeciesPoolsList, newAgentArray[newChildIndex].speciesID);
survivingAgentBreedingPool.AddNewAgent(newAgentArray[newChildIndex]);
//SortNewAgentIntoSpecies(newAgentArray[newChildIndex], childSpeciesList); // sorts this surviving agent into next generation's species'
newChildIndex++;
break;
}
}
}
}
// Figure out how many new agents must be created to fill up the new population:
int numNewChildAgents = sourcePopulation.populationMaxSize - numSurvivors;
int numEligibleBreederAgents = Mathf.RoundToInt(breedingRate * (float)sourcePopulation.populationMaxSize);
int currentRankIndex = 0;
// Once the agents are ranked, trim the BreedingPools of agents that didn't make the cut for mating:
if(useSpeciation) {
for (int s = 0; s < sourcePopulation.speciesBreedingPoolList.Count; s++) {
int index = 0;
int failsafe = 0;
int numAgents = sourcePopulation.speciesBreedingPoolList[s].agentList.Count;
while (index < numAgents) {
if (index < sourcePopulation.speciesBreedingPoolList[s].agentList.Count) {
if (sourcePopulation.speciesBreedingPoolList[s].agentList[index].fitnessRank >= numEligibleBreederAgents) {
sourcePopulation.speciesBreedingPoolList[s].agentList.RemoveAt(index);
}
else {
index++;
}
}
else {
break;
}
failsafe++;
if (failsafe > 500) {
Debug.Log("INFINITE LOOP! hit failsafe 500 iters -- Trimming BreedingPools!");
break;
}
//.........这里部分代码省略.........
示例2: BreedPopulation
public Population BreedPopulation(ref Population sourcePopulation)
{
for(int m = 0; m < sourcePopulation.masterAgentArray.Length; m++) {
//sourcePopulation.masterAgentArray[m].brain.genome.PrintBiases("sourcePop " + sourcePopulation.masterAgentArray[m].fitnessScore.ToString() + ", " + m.ToString() + ", ");
//newPop.masterAgentArray[m].brain.genome.PrintBiases("newPop " + m.ToString() + ", ");
}
// rank sourcePop by fitness score // maybe do this as a method of Population class?
sourcePopulation.RankAgentArray();
Population newPopulation = new Population();
newPopulation = sourcePopulation.CopyPopulationSettings();
// Calculate total fitness score:
float totalScore = 0f;
if(survivalByRaffle) {
for(int a = 0; a < sourcePopulation.populationMaxSize; a++) { // iterate through all agents
totalScore += sourcePopulation.masterAgentArray[a].fitnessScore;
}
}
// Create the Population that will hold the next Generation agentArray:
Population newPop = sourcePopulation.CopyPopulationSettings();
// Figure out How many Agents survive
int numSurvivors = Mathf.RoundToInt(survivalRate * (float)newPop.populationMaxSize);
//Depending on method, one at a time, select an Agent to survive until the max Number is reached
int newChildIndex = 0;
// For ( num Agents ) {
for(int i = 0; i < numSurvivors; i++) {
// If survival is by fitness score ranking:
if(survivalByRank) {
// Pop should already be ranked, so just traverse from top (best) to bottom (worst)
newPopulation.masterAgentArray[newChildIndex] = sourcePopulation.masterAgentArray[newChildIndex];
newChildIndex++;
}
// if survival is completely random, as a control:
if(survivalStochastic) {
int randomAgent = UnityEngine.Random.Range (0, numSurvivors-1);
// Set next newChild slot to a completely randomly-chosen agent
newPopulation.masterAgentArray[newChildIndex] = sourcePopulation.masterAgentArray[randomAgent];
newChildIndex++;
}
// if survival is based on a fitness lottery:
if(survivalByRaffle) { // Try when Fitness is normalized from 0-1
float randomSlicePosition = UnityEngine.Random.Range(0f, totalScore);
float accumulatedFitness = 0f;
for(int a = 0; a < sourcePopulation.populationMaxSize; a++) { // iterate through all agents
accumulatedFitness += sourcePopulation.masterAgentArray[a].fitnessScore;
// if accum fitness is on slicePosition, copy this Agent
Debug.Log ("NumSurvivors: " + numSurvivors.ToString() + ", Surviving Agent " + a.ToString() + ": AccumFitness: " + accumulatedFitness.ToString() + ", RafflePos: " + randomSlicePosition.ToString() + ", TotalScore: " + totalScore.ToString() + ", newChildIndex: " + newChildIndex.ToString());
if(accumulatedFitness >= randomSlicePosition) {
newPopulation.masterAgentArray[newChildIndex] = sourcePopulation.masterAgentArray[a];
newChildIndex++;
}
}
}
// set newPop Agent to lucky sourcePop index
////////// Agent survivingAgent = sourcePopulation.Select
// Fill up newPop agentArray with the surviving Agents
// Keep track of Index, as that will be needed for new agents
}
// Figure out how many new agents must be created to fill up the new population:
int numNewChildAgents = newPopulation.populationMaxSize - numSurvivors;
int numEligibleBreederAgents = Mathf.RoundToInt(breedingRate * (float)newPop.populationMaxSize);
int currentRankIndex = 0;
float totalScoreBreeders = 0f;
if(breedingByRaffle) {
for(int a = 0; a < numEligibleBreederAgents; a++) { // iterate through all agents
totalScoreBreeders += sourcePopulation.masterAgentArray[a].fitnessScore;
}
}
//float[][] parentAgentChromosomes = new float[][];
// Iterate over numAgentsToCreate :
// Change to While loop?
int newChildrenCreated = 0;
while(newChildrenCreated < numNewChildAgents) {
// Find how many parents random number btw min/max
int numParentAgents = UnityEngine.Random.Range (minNumParents, maxNumParents);
int numChildAgents = 1;
if(numNewChildAgents - newChildrenCreated >= 2) { // room for two more!
numChildAgents = 2;
//Debug.Log ("numNewChildAgents: " + numNewChildAgents.ToString() + " - newChildrenCreated: " + newChildrenCreated.ToString() + " = numChildAgents: " + numChildAgents.ToString());
}
float[][] parentAgentBiases = new float[numParentAgents][];
float[][] parentAgentWeights = new float[numParentAgents][];
for(int p = 0; p < numParentAgents; p++) {
// Iterate over numberOfParents :
// Depending on method, select suitable agents' genome.Arrays until the numberOfPArents is reached, collect them in an array of arrays
// If breeding is by fitness score ranking:
if(breedingByRank) {
// Pop should already be ranked, so just traverse from top (best) to bottom (worst) to select parentAgents
if(currentRankIndex >= numEligibleBreederAgents) { // if current rank index is greater than the num of eligible breeders, then restart the index to 0;
currentRankIndex = 0;
}
//parentAgentChromosomes[p] = new float[sourcePopulation.masterAgentArray[currentRankIndex].genome.genomeBiases.Length];
//.........这里部分代码省略.........