当前位置: 首页>>代码示例>>C#>>正文


C# Population.Add方法代码示例

本文整理汇总了C#中Population.Add方法的典型用法代码示例。如果您正苦于以下问题:C# Population.Add方法的具体用法?C# Population.Add怎么用?C# Population.Add使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Population的用法示例。


在下文中一共展示了Population.Add方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: testCrossoverPopulation

        public bool testCrossoverPopulation()
        {
            Population parents = new Population();

            Chromosome[] chr_tab = { new Chromosome(new bool[] {false, false, false}), new Chromosome(new bool[] { true, true, true })};
            Individual[] ind_tab = new Individual[4];

            for (int i = 0; i < 4; i++)
            {
                ind_tab[i] = new Individual(chr_tab[i % 2]);
                parents.Add(ind_tab[i]);
            }

            int[] permutation = new int[] { 0, 2, 1, 3};
            int random1 = 2;
            int random2 = 0;

            Population orphans = this.crossoverHelper(parents, random1, random2, permutation);
            for (int i = 0; i < 4; i++)
            {
                if (i < 2)
                {
                    for (int j = 0; j < orphans.getIndividual(0).chromosome.Count; j++)
                    {
                        if (orphans.getIndividual(i).chromosome[j] != false) return false;
                    }
                }
                else
                {
                    for (int j = 0; j < orphans.getIndividual(0).chromosome.Count; j++)
                    {
                        if (orphans.getIndividual(i).chromosome[j] != true) return false;
                    }
                }
            }
            return true;
        }
开发者ID:egrotowska,项目名称:GA_SocialInteractions,代码行数:37,代码来源:TestPopulation.cs

示例2: DoSolve

        /// <summary>
        /// Returns a solution found using best-placement.
        /// </summary>
        /// <returns></returns>
        protected override IRoute DoSolve(OsmSharp.Tools.Math.TSP.Problems.IProblem problem)
        {
            // create the settings.
            SolverSettings settings = new SolverSettings(
                -1,
                -1,
                1000000000,
                -1,
                -1,
                -1);

            Solver<List<int>, GeneticProblem, Fitness> solver =
                new Solver<List<int>, GeneticProblem, Fitness>(
                new GeneticProblem(problem),
                settings,
                null,
                null,
                null,
                _generation_operation,
                new FitnessCalculator(),
                true, false);

            Population<List<int>, GeneticProblem, Fitness> population =
                new Population<List<int>, GeneticProblem, Fitness>(true);
            while (population.Count < _population_size)
            {
                // generate new.
                Individual<List<int>, GeneticProblem, Fitness> new_individual =
                    _generation_operation.Generate(solver);

                // add to population.
                population.Add(new_individual);
            }

            // select each individual once.
            Population<List<int>, GeneticProblem, Fitness> new_population =
                new Population<List<int>, GeneticProblem, Fitness>(true);
            Individual<List<int>, GeneticProblem, Fitness> best = null;
            int stagnation = 0;
            while (stagnation < _stagnation)
            {
                while (new_population.Count < _population_size)
                {
                    // select an individual and the next one.
                    int idx = OsmSharp.Tools.Math.Random.StaticRandomGenerator.Get().Generate(population.Count);
                    Individual<List<int>, GeneticProblem, Fitness> individual1 = population[idx];
                    Individual<List<int>, GeneticProblem, Fitness> individual2 = null;
                    if (idx == population.Count - 1)
                    {
                        individual2 = population[0];
                    }
                    else
                    {
                        individual2 = population[idx + 1];
                    }
                    population.RemoveAt(idx);

                    Individual<List<int>, GeneticProblem, Fitness> new_individual = _cross_over_operation.CrossOver(solver,
                        individual1, individual2);

                    new_individual.CalculateFitness(solver.Problem, solver.FitnessCalculator);
                    if (new_individual.Fitness.CompareTo(
                        individual1.Fitness) < 0)
                    {
                        new_population.Add(new_individual);
                    }
                    else
                    {
                        new_population.Add(individual1);
                    }
                }

                population = new_population;
                population.Sort(solver, solver.FitnessCalculator);

                new_population = new Population<List<int>, GeneticProblem, Fitness>(true);

                if (best == null ||
                    best.Fitness.CompareTo(population[0].Fitness) > 0)
                {
                    stagnation = 0;
                    best = population[0];
                }
                else
                {
                    stagnation++;
                }

                //// report progress.
                //OsmSharp.Tools.Output.OutputStreamHost.ReportProgress(stagnation,_stagnation,
                //    "OsmSharp.Tools.Math.TSP.EdgeAssemblyGenetic.EdgeAssemblyCrossOverSolver",
                //    "Solving using EAX...");
            }

            List<int> result = new List<int>(best.Genomes);
            result.Insert(0, 0);
//.........这里部分代码省略.........
开发者ID:jorik041,项目名称:osmsharp,代码行数:101,代码来源:EdgeAssemblyCrossOverSolver.cs

示例3: SolveStep


//.........这里部分代码省略.........
            {
                var first = this.TournamentSelect();
                var second = this.TournamentSelect();

                Assert.That(first.DepartureTime != default(DateTime) && second.DepartureTime != default(DateTime));

                bool doCrossover = this.random.NextDouble() <= this.Properties.CrossoverRate;
                bool doMutation = this.random.NextDouble() <= this.Properties.MutationRate;
                Critter[] children = doCrossover
                                         ? this.Properties.Breeder.Crossover(first, second)
                                         : new[] { first, second };

                if (doMutation)
                {
                    children[0] = this.Properties.Mutator.Mutate(children[0]);
                    children[1] = this.Properties.Mutator.Mutate(children[1]);
                }

                Assert.That(
                    children[0].DepartureTime != default(DateTime) && children[1].DepartureTime != default(DateTime));

                if (doCrossover || doMutation)
                {
                    children[0].Fitness = this.Properties.FitnessFunction.GetFitness(
                        children[0].Route, children[0].DepartureTime);
                    children[1].Fitness = this.Properties.FitnessFunction.GetFitness(
                        children[1].Route, children[1].DepartureTime);
                }

                // var ff = (AlFitnessFunction)this.properties.FitnessFunction;
                Assert.That(
                    children[0].DepartureTime != default(DateTime) && children[1].DepartureTime != default(DateTime));

                this.population[1].AddRange(children);

                this.progress++;
            }

            /*

            var q = new List<Critter>(this.Properties.PopulationSize);
            foreach (var c1 in f)
            {
                c1.Clear();
            }
            f.Clear();

            for (int i = 0; i < this.Properties.PopulationSize/2; i ++)
            {
                var first = TournamentSelect();
                var second = TournamentSelect();

                Assert.That(first.departureTime != default(DateTime) && second.departureTime != default(DateTime));

                bool doCrossover = this.random.NextDouble() <= this.Properties.CrossoverRate;
                bool doMutation = this.random.NextDouble() <= this.Properties.MutationRate;
                Critter[] children = doCrossover
                                         ? this.Properties.Breeder.Crossover(first, second)
                                         : new[] { first, second };

                if (doMutation)
                {
                    children[0] = this.Properties.Mutator.Mutate(children[0]);
                    children[1] = this.Properties.Mutator.Mutate(children[1]);
                }
开发者ID:NoxHarmonium,项目名称:rmitjourneyplanner,代码行数:66,代码来源:EaJourneyPlanner.cs


注:本文中的Population.Add方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。