当前位置: 首页>>代码示例>>C#>>正文


C# InitializedList.Sort方法代码示例

本文整理汇总了C#中InitializedList.Sort方法的典型用法代码示例。如果您正苦于以下问题:C# InitializedList.Sort方法的具体用法?C# InitializedList.Sort怎么用?C# InitializedList.Sort使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在InitializedList的用法示例。


在下文中一共展示了InitializedList.Sort方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: SymmetricSchurDecomposition


//.........这里部分代码省略.........
            Matrix ss = new Matrix(s);

            Vector tmpDiag = new Vector(diagonal_);
            Vector tmpAccumulate = new Vector(size, 0.0);
            double threshold, epsPrec = 1e-15;
            bool keeplooping = true;
            int maxIterations = 100, ite = 1;
            do {
                //main loop
                double sum = 0;
                for (int a=0; a<size-1; a++) {
                    for (int b=a+1; b<size; b++) {
                        sum += Math.Abs(ss[a,b]);
                    }
                }

                if (sum==0) {
                    keeplooping = false;
                } else {
                    /* To speed up computation a threshold is introduced to
                       make sure it is worthy to perform the Jacobi rotation
                    */
                    if (ite<5) threshold = 0.2*sum/(size*size);
                    else       threshold = 0.0;

                    int j, k, l;
                    for (j=0; j<size-1; j++) {
                        for (k=j+1; k<size; k++) {
                            double sine, rho, cosin, heig, tang, beta;
                            double smll = Math.Abs(ss[j,k]);
                            if(ite> 5 &&
                               smll<epsPrec*Math.Abs(diagonal_[j]) &&
                               smll<epsPrec*Math.Abs(diagonal_[k])) {
                                    ss[j,k] = 0;
                            } else if (Math.Abs(ss[j,k])>threshold) {
                                heig = diagonal_[k]-diagonal_[j];
                                if (smll<epsPrec*Math.Abs(heig)) {
                                    tang = ss[j,k]/heig;
                                } else {
                                    beta = 0.5*heig/ss[j,k];
                                    tang = 1.0/(Math.Abs(beta)+
                                        Math.Sqrt(1+beta*beta));
                                    if (beta<0)
                                        tang = -tang;
                                }
                                cosin = 1/Math.Sqrt(1+tang*tang);
                                sine = tang*cosin;
                                rho = sine/(1+cosin);
                                heig = tang*ss[j,k];
                                tmpAccumulate[j] -= heig;
                                tmpAccumulate[k] += heig;
                                diagonal_[j] -= heig;
                                diagonal_[k] += heig;
                                ss[j,k] = 0.0;
                                for (l=0; l+1<=j; l++)
                                    jacobiRotate_(ss, rho, sine, l, j, l, k);
                                for (l=j+1; l<=k-1; l++)
                                    jacobiRotate_(ss, rho, sine, j, l, l, k);
                                for (l=k+1; l<size; l++)
                                    jacobiRotate_(ss, rho, sine, j, l, k, l);
                                for (l=0;   l<size; l++)
                                    jacobiRotate_(eigenVectors_,
                                                      rho, sine, l, j, l, k);
                            }
                        }
                    }
                    for (k=0; k<size; k++) {
                        tmpDiag[k] += tmpAccumulate[k];
                        diagonal_[k] = tmpDiag[k];
                        tmpAccumulate[k] = 0.0;
                    }
                }
            } while (++ite<=maxIterations && keeplooping);

            if(!(ite<=maxIterations))
                throw new ApplicationException("Too many iterations (" + maxIterations + ") reached");


            // sort (eigenvalues, eigenvectors)
            List<KeyValuePair<double, Vector>> temp = new InitializedList<KeyValuePair<double, Vector>>(size);
            int row, col;
            for (col=0; col<size; col++) {
                Vector eigenVector = new Vector(size);
                eigenVectors_.column(col).ForEach((ii, xx) => eigenVector[ii] = xx);
                temp[col] = new KeyValuePair<double,Vector>(diagonal_[col], eigenVector);
            }
            // sort descending: std::greater
            temp.Sort((x, y) => y.Key.CompareTo(x.Key));
            double maxEv = temp[0].Key;
            for (col=0; col<size; col++) {
                // check for round-off errors
                diagonal_[col] = (Math.Abs(temp[col].Key/maxEv)<1e-16 ? 0.0 : temp[col].Key);
                double sign = 1.0;
                if (temp[col].Value[0]<0.0)
                    sign = -1.0;
                for (row=0; row<size; row++) {
                    eigenVectors_[row,col] = sign * temp[col].Value[row];
                }
            }
        }
开发者ID:akasolace,项目名称:qlnet,代码行数:101,代码来源:symmetricschurdecomposition.cs


注:本文中的InitializedList.Sort方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。