本文整理汇总了C#中InitializedList类的典型用法代码示例。如果您正苦于以下问题:C# InitializedList类的具体用法?C# InitializedList怎么用?C# InitializedList使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
InitializedList类属于命名空间,在下文中一共展示了InitializedList类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: expectedCashflows
//public List<CashFlow> interestCashflows()
//{
// List<CashFlow> icf = new List<CashFlow>();
// foreach (CashFlow cf in cashflows())
// {
// if (cf is QLNet.FixedRateCoupon)
// icf.Add(cf);
// }
// return icf;
//}
public List<CashFlow> expectedCashflows()
{
calcBondFactor();
List<CashFlow> expectedcashflows = new List<CashFlow>();
List<double> notionals = new InitializedList<double>(schedule_.Count);
notionals[0] = notionals_[0];
for (int i = 0; i < schedule_.Count - 1; ++i)
{
double currentNotional = notionals[i];
double smm = SMM(schedule_[i]);
double prepay = (notionals[i] * bondFactors_[i + 1]) / bondFactors_[i] * smm;
double actualamort = currentNotional * (1 - bondFactors_[i + 1] / bondFactors_[i]);
notionals[i + 1] = currentNotional - actualamort - prepay;
// ADD
CashFlow c1 = new VoluntaryPrepay(prepay, schedule_[i + 1]);
CashFlow c2 = new AmortizingPayment(actualamort, schedule_[i + 1]);
CashFlow c3 = new FixedRateCoupon(currentNotional, schedule_[i + 1], new InterestRate(PassThroughRate_, dCounter_, Compounding.Simple), schedule_[i], schedule_[i + 1]);
expectedcashflows.Add(c1);
expectedcashflows.Add(c2);
expectedcashflows.Add(c3);
}
notionals[notionals.Count - 1] = 0.0;
return expectedcashflows;
}
示例2: Loan
public Loan(int legs)
{
legs_ = new InitializedList<List<CashFlow>>(legs);
payer_ = new InitializedList<double>(legs);
notionals_ = new List<double>();
legNPV_ = new InitializedList<double?>(legs);
}
示例3: AmericanExercise
public AmericanExercise(Date latest, bool payoffAtExpiry)
: base(Type.American, payoffAtExpiry)
{
dates_ = new InitializedList<Date>(2);
dates_[0] = Date.minDate();
dates_[1] = latest;
}
示例4: initialize
private void initialize()
{
// firstSeed is chosen based on clock() and used for the first rng
ulong firstSeed = (ulong)DateTime.Now.Ticks; // (std::time(0));
MersenneTwisterUniformRng first = new MersenneTwisterUniformRng(firstSeed);
// secondSeed is as random as it could be
// feel free to suggest improvements
ulong secondSeed = first.nextInt32();
MersenneTwisterUniformRng second = new MersenneTwisterUniformRng(secondSeed);
// use the second rng to initialize the final one
ulong skip = second.nextInt32() % 1000;
List<ulong> init = new InitializedList<ulong>(4);
init[0]=second.nextInt32();
init[1]=second.nextInt32();
init[2]=second.nextInt32();
init[3]=second.nextInt32();
rng_ = new MersenneTwisterUniformRng(init);
for (ulong i=0; i<skip ; i++)
rng_.nextInt32();
}
示例5: minimize
public override EndCriteria.Type minimize(Problem P, EndCriteria endCriteria) {
EndCriteria.Type ecType = EndCriteria.Type.None;
P.reset();
Vector x_ = P.currentValue();
currentProblem_ = P;
initCostValues_ = P.costFunction().values(x_);
int m = initCostValues_.size();
int n = x_.size();
Vector xx = new Vector(x_);
Vector fvec = new Vector(m), diag = new Vector(n);
int mode = 1;
double factor = 1;
int nprint = 0;
int info = 0;
int nfev =0;
Matrix fjac = new Matrix(m, n);
int ldfjac = m;
List<int> ipvt = new InitializedList<int>(n);
Vector qtf = new Vector(n), wa1 = new Vector(n), wa2 = new Vector(n), wa3 = new Vector(n), wa4 = new Vector(m);
// call lmdif to minimize the sum of the squares of m functions
// in n variables by the Levenberg-Marquardt algorithm.
MINPACK.lmdif(m, n, xx, ref fvec,
endCriteria.functionEpsilon(),
xtol_,
gtol_,
endCriteria.maxIterations(),
epsfcn_,
diag, mode, factor,
nprint, ref info, ref nfev, ref fjac,
ldfjac, ref ipvt, ref qtf,
wa1, wa2, wa3, wa4,
fcn);
info_ = info;
// check requirements & endCriteria evaluation
if(info == 0) throw new ApplicationException("MINPACK: improper input parameters");
//if(info == 6) throw new ApplicationException("MINPACK: ftol is too small. no further " +
// "reduction in the sum of squares is possible.");
if (info != 6) ecType = EndCriteria.Type.StationaryFunctionValue;
//QL_REQUIRE(info != 5, "MINPACK: number of calls to fcn has reached or exceeded maxfev.");
endCriteria.checkMaxIterations(nfev, ref ecType);
if(info == 7) throw new ApplicationException("MINPACK: xtol is too small. no further " +
"improvement in the approximate " +
"solution x is possible.");
if(info == 8) throw new ApplicationException("MINPACK: gtol is too small. fvec is " +
"orthogonal to the columns of the " +
"jacobian to machine precision.");
// set problem
x_ = new Vector(xx.GetRange(0, n));
P.setCurrentValue(x_);
P.setFunctionValue(P.costFunction().value(x_));
return ecType;
}
示例6: multiPathBasisSystem
public static List<Func<Vector, double>> multiPathBasisSystem(int dim, int order, PolynomType polynomType)
{
List<Func<double, double>> b = pathBasisSystem(order, polynomType);
List<Func<Vector, double>> ret = new List<Func<Vector,double>>();
ret.Add((xx) => 1.0);
for (int i=1; i<=order; ++i) {
List<Func<Vector, double>> a = w(dim, i, polynomType, b);
foreach (var iter in a) {
ret.Add(iter);
}
}
// remove-o-zap: now remove redundant functions.
// usually we do have a lot of them due to the construction schema.
// We use a more "hands on" method here.
List<bool> rm = new InitializedList<bool>(ret.Count, true);
Vector x = new Vector(dim), v = new Vector(ret.Count);
MersenneTwisterUniformRng rng = new MersenneTwisterUniformRng(1234UL);
for (int i=0; i<10; ++i) {
int k;
// calculate random x vector
for (k=0; k<dim; ++k) {
x[k] = rng.next().value;
}
// get return values for all basis functions
for (k = 0; k < ret.Count; ++k) {
v[k] = ret[k](x);
}
// find duplicates
for (k = 0; k < ret.Count; ++k) {
if (v.First(xx => (Math.Abs(v[k] - xx) <= 10*v[k]*Const.QL_Epsilon)) == v.First() + k) {
// don't remove this item, it's unique!
rm[k] = false;
}
}
}
int iter2 = 0;
for (int i = 0; i < rm.Count; ++i) {
if (rm[i]) {
ret.RemoveAt(iter2);
}
else {
++iter2;
}
}
return ret;
}
示例7: value
public override double value(double x, double y)
{
List<double> section = new InitializedList<double>( splines_.Count );
for (int i=0; i<splines_.Count; i++)
section[i]=splines_[i].value(x,true);
CubicInterpolation spline = new CubicInterpolation(this.yBegin_, this.ySize_, section,
CubicInterpolation.DerivativeApprox.Spline, false,
CubicInterpolation.BoundaryCondition.SecondDerivative, 0.0,
CubicInterpolation.BoundaryCondition.SecondDerivative, 0.0);
return spline.value(y,true);
}
示例8: BrownianBridge
//! generic times
/*! \note the starting time of the path is assumed to be 0 and must not be included */
public BrownianBridge(List<double> times) {
size_ = times.Count;
t_ = new InitializedList<double>(size_);
sqrtdt_ = new InitializedList<double>(size_);
bridgeIndex_ = new InitializedList<int>(size_);
leftIndex_ = new InitializedList<int>(size_);
rightIndex_ = new InitializedList<int>(size_);
leftWeight_ = new InitializedList<double>(size_);
rightWeight_ = new InitializedList<double>(size_);
stdDev_ = new InitializedList<double>(size_);
initialize();
}
示例9: secondDerivativeX
public double secondDerivativeX(double x, double y)
{
List<double> section = new InitializedList<double>( this.zData_.columns() );
for (int i=0; i < section.Count; ++i)
{
section[i] = value(this.xBegin_[i], y);
}
return new CubicInterpolation( this.xBegin_, this.xSize_, section,
CubicInterpolation.DerivativeApprox.Spline, false,
CubicInterpolation.BoundaryCondition.SecondDerivative, 0.0,
CubicInterpolation.BoundaryCondition.SecondDerivative, 0.0).secondDerivative(x);
}
示例10: computeSimplexSize
// Computes the size of the simplex
public static double computeSimplexSize(InitializedList<Vector> vertices)
{
Vector center = new Vector(vertices[0].Count, 0);
for (int i = 0; i < vertices.Count; ++i)
center += vertices[i];
center *= 1 / (double)(vertices.Count);
double result = 0;
for (int i = 0; i < vertices.Count; ++i)
{
Vector temp = vertices[i] - center;
result += Math.Sqrt(Vector.DotProduct(temp, temp));
}
return result / (double)(vertices.Count);
}
示例11: DiscretizedSwaption
public DiscretizedSwaption(Swaption.Arguments args,
Date referenceDate,
DayCounter dayCounter)
: base(new DiscretizedSwap(args, referenceDate, dayCounter), args.exercise.type(), new List<double>())
{
arguments_=args;
exerciseTimes_ = new InitializedList<double>(arguments_.exercise.dates().Count);
for (int i = 0; i < exerciseTimes_.Count; ++i)
exerciseTimes_[i] =
dayCounter.yearFraction(referenceDate,
arguments_.exercise.date(i));
// Date adjustments can get time vectors out of synch.
// Here, we try and collapse similar dates which could cause
// a mispricing.
for (int i=0; i<arguments_.exercise.dates().Count; i++) {
Date exerciseDate = arguments_.exercise.date(i);
for (int j = 0; j < arguments_.fixedPayDates.Count; j++) {
if (withinNextWeek(exerciseDate,
arguments_.fixedPayDates[j])
// coupons in the future are dealt with below
&& arguments_.fixedResetDates[j] < referenceDate)
arguments_.fixedPayDates[j] = exerciseDate;
}
for (int j = 0; j < arguments_.fixedResetDates.Count; j++) {
if (withinPreviousWeek(exerciseDate,
arguments_.fixedResetDates[j]))
arguments_.fixedResetDates[j] = exerciseDate;
}
for (int j = 0; j < arguments_.floatingResetDates.Count; j++) {
if (withinPreviousWeek(exerciseDate,
arguments_.floatingResetDates[j]))
arguments_.floatingResetDates[j] = exerciseDate;
}
}
double lastFixedPayment =
dayCounter.yearFraction(referenceDate,
arguments_.fixedPayDates.Last() );
double lastFloatingPayment =
dayCounter.yearFraction(referenceDate,
arguments_.floatingPayDates.Last());
lastPayment_ = Math.Max(lastFixedPayment,lastFloatingPayment);
underlying_ = new DiscretizedSwap(arguments_,
referenceDate,
dayCounter);
}
示例12: test1dLinearRegression
public void test1dLinearRegression()
{
//BOOST_MESSAGE("Testing 1d simple linear least-squares regression...");
/* Example taken from the QuantLib-User list, see posting
* Multiple linear regression/weighted regression, Boris Skorodumov */
//SavedSettings backup;
List<double> x = new InitializedList<double>(9),
y = new InitializedList<double>(9);
x[0] = 2.4; x[1] = 1.8; x[2] = 2.5; x[3] = 3.0;
x[4] = 2.1; x[5] = 1.2; x[6] = 2.0; x[7] = 2.7; x[8] = 3.6;
y[0] = 7.8; y[1] = 5.5; y[2] = 8.0; y[3] = 9.0;
y[4] = 6.5; y[5] = 4.0; y[6] = 6.3; y[7] = 8.4; y[8] = 10.2;
List<Func<double, double>> v = new List<Func<double, double>>();
v.Add(a => 1.0);
v.Add(a => a);
LinearRegression m = new LinearRegression(x, y);
const double tol = 0.0002;
double[] coeffExpected = new double[] { 0.9448, 2.6853 };
double[] errorsExpected = new double[] { 0.3654, 0.1487 };
for (int i = 0; i < 2; ++i) {
if (Math.Abs(m.standardErrors()[i] - errorsExpected[i]) > tol) {
Assert.Fail("Failed to reproduce linear regression standard errors"
+ "\n calculated: " + m.standardErrors()[i]
+ "\n expected: " + errorsExpected[i]
+ "\n tolerance: " + tol);
}
if (Math.Abs(m.coefficients()[i] - coeffExpected[i]) > tol) {
Assert.Fail("Failed to reproduce linear regression coef."
+ "\n calculated: " + m.coefficients()[i]
+ "\n expected: " + coeffExpected[i]
+ "\n tolerance: " + tol);
}
}
}
示例13: fetchResults
public override void fetchResults(IPricingEngineResults r)
{
base.fetchResults(r);
LoanPricingEngineResults results = r as LoanPricingEngineResults;
if (results == null) throw new ArgumentException("wrong result type");
if (results.legNPV.Count != 0)
{
if (results.legNPV.Count != legNPV_.Count)
{
throw new ArgumentException("wrong number of leg NPV returned");
}
legNPV_ = results.legNPV;
}
else
{
legNPV_ = new InitializedList<double?>(legNPV_.Count);
}
}
示例14: MersenneTwisterUniformRng
public MersenneTwisterUniformRng(List<ulong> seeds) {
mt = new InitializedList<ulong>(N);
seedInitialization(19650218UL);
int i = 1, j = 0, k = (N > seeds.Count ? N : seeds.Count);
for (; k!=0; k--) {
mt[i] = (mt[i] ^ ((mt[i - 1] ^ (mt[i - 1] >> 30)) * 1664525UL)) + seeds[j] + (ulong)j; /* non linear */
mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
i++; j++;
if (i>=N) { mt[0] = mt[N-1]; i=1; }
if (j>=seeds.Count) j=0;
}
for (k=N-1; k!=0; k--) {
mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1566083941UL)) - (ulong)i; /* non linear */
mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
i++;
if (i>=N) { mt[0] = mt[N-1]; i=1; }
}
mt[0] = 0x80000000UL; /*MSB is 1; assuring non-zero initial array*/
}
示例15: calculate
// Instrument interface
public override void calculate() {
if (discountCurve_.empty()) throw new ArgumentException("no discounting term structure set");
results_.value = results_.cash = 0;
results_.errorEstimate = null;
results_.legNPV = new InitializedList<double?>(arguments_.legs.Count);
results_.legBPS = new InitializedList<double?>(arguments_.legs.Count);
List<double?> startDiscounts = new InitializedList<double?>(arguments_.legs.Count);
for (int i=0; i<arguments_.legs.Count; ++i) {
results_.legNPV[i] = arguments_.payer[i] * CashFlows.npv(arguments_.legs[i], discountCurve_);
results_.legBPS[i] = arguments_.payer[i] * CashFlows.bps(arguments_.legs[i], discountCurve_);
results_.value += results_.legNPV[i];
results_.cash += arguments_.payer[i] * CashFlows.cash(arguments_.legs[i]);
try {
Date d = CashFlows.startDate(arguments_.legs[i]);
startDiscounts[i] = discountCurve_.link.discount(d);
} catch {
startDiscounts[i] = null;
}
}
results_.additionalResults.Add("startDiscounts", startDiscounts);
}