本文整理汇总了C#中IMatrixData.GetCategoryRowAt方法的典型用法代码示例。如果您正苦于以下问题:C# IMatrixData.GetCategoryRowAt方法的具体用法?C# IMatrixData.GetCategoryRowAt怎么用?C# IMatrixData.GetCategoryRowAt使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类IMatrixData
的用法示例。
在下文中一共展示了IMatrixData.GetCategoryRowAt方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: ProcessData
//.........这里部分代码省略.........
double mwWeightedNormalizedSummedHistoneIntensities = 0;
foreach (int row in histoneRows){
if (!double.IsNaN(column[row]) && !double.IsNaN(mw[row])){
mwWeightedNormalizedSummedHistoneIntensities += (column[row]/detectabilityNormFactor[row])*mw[row];
}
}
double ploidy =
param.GetSingleChoiceWithSubParams("Scaling mode").GetSubParameters().GetDoubleParam("Ploidy").Value;
factor = (cValue*ploidy*avogadro)/mwWeightedNormalizedSummedHistoneIntensities;
break;
default:
factor = 1;
break;
}
normalizationFactors[col] = factor;
}
// check averaging mode
if (param.GetSingleChoiceWithSubParams("Averaging mode").Value == 1) // same factor for all
{
double factor = ArrayUtils.Mean(normalizationFactors);
for (int i = 0; i < normalizationFactors.Length; i++){
normalizationFactors[i] = factor;
}
}
if (param.GetSingleChoiceWithSubParams("Averaging mode").Value == 2) // same factor in each group
{
if (
param.GetSingleChoiceWithSubParams("Averaging mode").GetSubParameters().GetSingleChoiceParam("Grouping").Value ==
-1){
processInfo.ErrString = "No grouping selected.";
return;
}
string[][] groupNames =
mdata.GetCategoryRowAt(
param.GetSingleChoiceWithSubParams("Averaging mode").GetSubParameters().GetSingleChoiceParam("Grouping").Value);
string[] uniqueGroupNames = Unique(groupNames);
int[] grouping = new int[columns.Count];
for (int i = 0; i < columns.Count; i++){
if (intensityCols[i] >= mdata.ExpressionColumnCount){ // Numeric annotation columns cannot be grouped
grouping[i] = i;
continue;
}
if (ArrayUtils.Contains(uniqueGroupNames, groupNames[i][0])){
grouping[i] = ArrayUtils.IndexOf(uniqueGroupNames, groupNames[i][0]);
continue;
}
grouping[i] = i;
}
Dictionary<int, List<double>> factors = new Dictionary<int, List<double>>();
for (int i = 0; i < columns.Count; i++){
if (factors.ContainsKey(grouping[i])){
factors[grouping[i]].Add(normalizationFactors[i]);
} else{
factors.Add(grouping[i], new List<double>{normalizationFactors[i]});
}
}
double[] averagedNormalizationFactors = new double[columns.Count];
for (int i = 0; i < columns.Count; i++){
List<double> factor;
factors.TryGetValue(grouping[i], out factor);
averagedNormalizationFactors[i] = ArrayUtils.Mean(factor);
}
normalizationFactors = averagedNormalizationFactors;
}
// loop over all selected columns and calculate copy numbers
for (int col = 0; col < columns.Count; col++){
示例2: GetEditParameters
public Parameters GetEditParameters(IMatrixData mdata, int ind)
{
List<Parameter> par = new List<Parameter>();
for (int i = 0; i < mdata.ExpressionColumnCount; i++){
string t = mdata.ExpressionColumnNames[i];
string help = "Specify a category value for the column '" + t + "'.";
par.Add(new StringParam(t, StringUtils.Concat(";", mdata.GetCategoryRowAt(ind)[i])){Help = help});
}
return new Parameters(par);
}
示例3: ProcessData
public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables,
ref IDocumentData[] documents, ProcessInfo processInfo)
{
const bool rows = true;
bool percentage;
int minValids = PerseusPluginUtils.GetMinValids(param, out percentage);
ParameterWithSubParams<int> modeParam = param.GetParamWithSubParams<int>("Mode");
int modeInd = modeParam.Value;
if (modeInd != 0 && mdata.CategoryRowNames.Count == 0){
processInfo.ErrString = "No grouping is defined.";
return;
}
FilteringMode filterMode;
double threshold;
double threshold2;
PerseusPluginUtils.ReadValuesShouldBeParams(param, out filterMode, out threshold, out threshold2);
if (modeInd != 0){
int gind = modeParam.GetSubParameters().GetParam<int>("Grouping").Value;
string[][] groupCol = mdata.GetCategoryRowAt(gind);
NonzeroFilterGroup(minValids, percentage, mdata, param, modeInd == 2, threshold, threshold2, filterMode, groupCol);
} else{
PerseusPluginUtils.NonzeroFilter1(rows, minValids, percentage, mdata, param, threshold, threshold2, filterMode);
}
}
示例4: DivideByColumn
public static void DivideByColumn(IMatrixData data, int index)
{
int p = data.RowCount;
int n = data.ExpressionColumnCount;
float[,] newEx = new float[p,n - 1];
for (int i = 0; i < p; i++){
for (int j = 0; j < index; j++){
newEx[i, j] = data[i, j]/data[i, index];
if (float.IsInfinity(newEx[i, j])){
newEx[i, j] = float.NaN;
}
}
for (int j = index + 1; j < n; j++){
newEx[i, j - 1] = data[i, j]/data[i, index];
if (float.IsInfinity(newEx[i, j - 1])){
newEx[i, j - 1] = float.NaN;
}
}
}
bool[,] newImp = new bool[p,n - 1];
for (int i = 0; i < p; i++){
for (int j = 0; j < index; j++){
newImp[i, j] = data.IsImputed[i, j] || data.IsImputed[i, index];
}
for (int j = index + 1; j < n; j++){
newImp[i, j - 1] = data.IsImputed[i, j] || data.IsImputed[i, index];
}
}
data.ExpressionValues = newEx;
data.IsImputed = newImp;
data.ExpressionColumnNames.RemoveAt(index);
data.ExpressionColumnDescriptions.RemoveAt(index);
for (int i = 0; i < data.CategoryRowCount; i++){
data.SetCategoryRowAt(ArrayUtils.RemoveAtIndex(data.GetCategoryRowAt(i), index), i);
}
for (int i = 0; i < data.NumericRowCount; i++){
data.NumericRows[i] = ArrayUtils.RemoveAtIndex(data.NumericRows[i], index);
}
}
示例5: ProcessData
public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables,
ref IDocumentData[] documents, ProcessInfo processInfo)
{
const bool rows = false;
int minValids = param.GetIntParam("Min. number of values").Value;
SingleChoiceWithSubParams modeParam = param.GetSingleChoiceWithSubParams("Mode");
int modeInd = modeParam.Value;
if (modeInd != 0 && mdata.CategoryRowNames.Count == 0){
processInfo.ErrString = "No grouping is defined.";
return;
}
if (modeInd != 0){
processInfo.ErrString = "Group-wise filtering can only be appled to rows.";
return;
}
SingleChoiceWithSubParams x = param.GetSingleChoiceWithSubParams("Values should be");
Parameters subParams = x.GetSubParameters();
int shouldBeIndex = x.Value;
FilteringMode filterMode;
double threshold = double.NaN;
double threshold2 = double.NaN;
switch (shouldBeIndex){
case 0:
filterMode = FilteringMode.Valid;
break;
case 1:
filterMode = FilteringMode.GreaterThan;
threshold = subParams.GetDoubleParam("Minimum").Value;
break;
case 2:
filterMode = FilteringMode.GreaterEqualThan;
threshold = subParams.GetDoubleParam("Minimum").Value;
break;
case 3:
filterMode = FilteringMode.LessThan;
threshold = subParams.GetDoubleParam("Maximum").Value;
break;
case 4:
filterMode = FilteringMode.LessEqualThan;
threshold = subParams.GetDoubleParam("Maximum").Value;
break;
case 5:
filterMode = FilteringMode.Between;
threshold = subParams.GetDoubleParam("Minimum").Value;
threshold2 = subParams.GetDoubleParam("Maximum").Value;
break;
case 6:
filterMode = FilteringMode.Outside;
threshold = subParams.GetDoubleParam("Minimum").Value;
threshold2 = subParams.GetDoubleParam("Maximum").Value;
break;
default:
throw new Exception("Should not happen.");
}
if (modeInd != 0){
int gind = modeParam.GetSubParameters().GetSingleChoiceParam("Grouping").Value;
string[][] groupCol = mdata.GetCategoryRowAt(gind);
NonzeroFilterGroup(minValids, mdata, param, modeInd == 2, threshold, threshold2, filterMode, groupCol);
} else{
NonzeroFilter1(rows, minValids, mdata, param, threshold, threshold2, filterMode);
}
}
示例6: WriteMatrixToFile
//.........这里部分代码省略.........
}
for (int i = 0; i < data.NumericColumnCount; i++)
{
words.Add("N");
}
for (int i = 0; i < data.StringColumnCount; i++)
{
words.Add("T");
}
for (int i = 0; i < data.MultiNumericColumnCount; i++)
{
words.Add("M");
}
writer.WriteLine("#!{Type}" + StringUtils.Concat("\t", words));
for (int i = 0; i < data.NumericRowCount; i++)
{
words = new List<string>();
for (int j = 0; j < data.ColumnCount; j++)
{
words.Add("" + data.NumericRows[i][j]);
}
for (int j = 0; j < data.CategoryColumnCount; j++)
{
words.Add("");
}
for (int j = 0; j < data.NumericColumnCount; j++)
{
words.Add("");
}
for (int j = 0; j < data.StringColumnCount; j++)
{
words.Add("");
}
for (int j = 0; j < data.MultiNumericColumnCount; j++)
{
words.Add("");
}
writer.WriteLine("#!{N:" + data.NumericRowNames[i] + "}" + StringUtils.Concat("\t", words));
}
for (int i = 0; i < data.CategoryRowCount; i++)
{
words = new List<string>();
for (int j = 0; j < data.ColumnCount; j++)
{
string[] s = data.GetCategoryRowAt(i)[j];
words.Add(s.Length == 0 ? "" : StringUtils.Concat(";", s));
}
for (int j = 0; j < data.CategoryColumnCount; j++)
{
words.Add("");
}
for (int j = 0; j < data.NumericColumnCount; j++)
{
words.Add("");
}
for (int j = 0; j < data.StringColumnCount; j++)
{
words.Add("");
}
for (int j = 0; j < data.MultiNumericColumnCount; j++)
{
words.Add("");
}
writer.WriteLine("#!{C:" + data.CategoryRowNames[i] + "}" + StringUtils.Concat("\t", words));
}
for (int j = 0; j < data.RowCount; j++)
{
words = new List<string>();
for (int i = 0; i < data.ColumnCount; i++)
{
string s1 = "" + data.Values.Get(j, i);
if (addtlMatrices)
{
s1 += ";" + data.IsImputed[j, i] + ";" + data.Quality.Get(j, i);
}
words.Add(s1);
}
for (int i = 0; i < data.CategoryColumnCount; i++)
{
string[] q = data.GetCategoryColumnEntryAt(i, j) ?? new string[0];
words.Add((q.Length > 0 ? StringUtils.Concat(";", q) : ""));
}
for (int i = 0; i < data.NumericColumnCount; i++)
{
words.Add("" + data.NumericColumns[i][j]);
}
for (int i = 0; i < data.StringColumnCount; i++)
{
words.Add(data.StringColumns[i][j]);
}
for (int i = 0; i < data.MultiNumericColumnCount; i++)
{
double[] q = data.MultiNumericColumns[i][j];
words.Add((q.Length > 0 ? StringUtils.Concat(";", q) : ""));
}
string s = StringUtils.Concat("\t", words);
writer.WriteLine(s);
}
}
}
示例7: ProcessData
public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables,
ref IDocumentData[] documents, ProcessInfo processInfo)
{
SingleChoiceWithSubParams p = param.GetSingleChoiceWithSubParams("Row");
int colInd = p.Value;
if (colInd < 0){
processInfo.ErrString = "No categorical rows available.";
return;
}
MultiChoiceParam mcp = p.GetSubParameters().GetMultiChoiceParam("Values");
int[] inds = mcp.Value;
if (inds.Length == 0){
processInfo.ErrString = "Please select at least one term for filtering.";
return;
}
string[] values = new string[inds.Length];
for (int i = 0; i < values.Length; i++){
values[i] = mdata.GetCategoryRowValuesAt(colInd)[inds[i]];
}
HashSet<string> value = new HashSet<string>(values);
bool remove = param.GetSingleChoiceParam("Mode").Value == 0;
string[][] cats = mdata.GetCategoryRowAt(colInd);
List<int> valids = new List<int>();
for (int i = 0; i < cats.Length; i++){
bool valid = true;
foreach (string w in cats[i]){
if (value.Contains(w)){
valid = false;
break;
}
}
if ((valid && remove) || (!valid && !remove)){
valids.Add(i);
}
}
PerseusPluginUtils.FilterColumns(mdata, param, valids.ToArray());
}
示例8: FillMatrixKeep
private static void FillMatrixKeep(int groupColInd, int validVals, IMatrixData mdata, Func<IList<double>, double> func)
{
string[][] groupCol = mdata.GetCategoryRowAt(groupColInd);
string[] groupNames = ArrayUtils.UniqueValuesPreserveOrder(groupCol);
int[][] colInds = PerseusPluginUtils.GetExpressionColIndices(groupCol, groupNames);
double[][] newNumCols = new double[groupNames.Length][];
for (int i = 0; i < newNumCols.Length; i++){
newNumCols[i] = new double[mdata.RowCount];
}
for (int i = 0; i < mdata.RowCount; i++){
for (int j = 0; j < groupNames.Length; j++){
List<double> vals = new List<double>();
foreach (int ind in colInds[j]){
double val = mdata[i, ind];
if (!double.IsNaN(val) && !double.IsInfinity(val)){
vals.Add(val);
}
}
float xy = float.NaN;
if (vals.Count >= validVals){
xy = (float) func(vals);
}
newNumCols[j][i] = xy;
}
}
for (int i = 0; i < groupNames.Length; i++){
mdata.AddNumericColumn(groupNames[i], groupNames[i], newNumCols[i]);
}
}
示例9: SetAnnotationRows
private static void SetAnnotationRows(IMatrixData result, IMatrixData mdata1, IMatrixData mdata2)
{
result.CategoryRowNames.Clear();
result.CategoryRowDescriptions.Clear();
result.ClearCategoryRows();
result.NumericRowNames.Clear();
result.NumericRowDescriptions.Clear();
result.NumericRows.Clear();
string[] allCatNames = ArrayUtils.Concat(mdata1.CategoryRowNames, mdata2.CategoryRowNames);
allCatNames = ArrayUtils.UniqueValues(allCatNames);
result.CategoryRowNames = new List<string>();
string[] allCatDescriptions = new string[allCatNames.Length];
for (int i = 0; i < allCatNames.Length; i++){
allCatDescriptions[i] = GetDescription(allCatNames[i], mdata1.CategoryRowNames, mdata2.CategoryRowNames,
mdata1.CategoryRowDescriptions, mdata2.CategoryRowDescriptions);
}
result.CategoryRowDescriptions = new List<string>();
for (int index = 0; index < allCatNames.Length; index++){
string t = allCatNames[index];
string[][] categoryRow = new string[mdata1.ExpressionColumnCount + mdata2.ExpressionColumnCount][];
for (int j = 0; j < categoryRow.Length; j++){
categoryRow[j] = new string[0];
}
int ind1 = mdata1.CategoryRowNames.IndexOf(t);
if (ind1 >= 0){
string[][] c1 = mdata1.GetCategoryRowAt(ind1);
for (int j = 0; j < c1.Length; j++){
categoryRow[j] = c1[j];
}
}
int ind2 = mdata2.CategoryRowNames.IndexOf(t);
if (ind2 >= 0){
string[][] c2 = mdata2.GetCategoryRowAt(ind2);
for (int j = 0; j < c2.Length; j++){
categoryRow[mdata1.ExpressionColumnCount + j] = c2[j];
}
}
result.AddCategoryRow(allCatNames[index], allCatDescriptions[index], categoryRow);
}
string[] allNumNames = ArrayUtils.Concat(mdata1.NumericRowNames, mdata2.NumericRowNames);
allNumNames = ArrayUtils.UniqueValues(allNumNames);
result.NumericRowNames = new List<string>(allNumNames);
string[] allNumDescriptions = new string[allNumNames.Length];
for (int i = 0; i < allNumNames.Length; i++){
allNumDescriptions[i] = GetDescription(allNumNames[i], mdata1.NumericRowNames, mdata2.NumericRowNames,
mdata1.NumericRowDescriptions, mdata2.NumericRowDescriptions);
}
result.NumericRowDescriptions = new List<string>(allNumDescriptions);
foreach (string t in allNumNames){
double[] numericRow = new double[mdata1.ExpressionColumnCount + mdata2.ExpressionColumnCount];
for (int j = 0; j < numericRow.Length; j++){
numericRow[j] = double.NaN;
}
int ind1 = mdata1.NumericRowNames.IndexOf(t);
if (ind1 >= 0){
double[] c1 = mdata1.NumericRows[ind1];
for (int j = 0; j < c1.Length; j++){
numericRow[j] = c1[j];
}
}
int ind2 = mdata2.NumericRowNames.IndexOf(t);
if (ind2 >= 0){
double[] c2 = mdata2.NumericRows[ind2];
for (int j = 0; j < c2.Length; j++){
numericRow[mdata1.ExpressionColumnCount + j] = c2[j];
}
}
result.NumericRows.Add(numericRow);
}
}
示例10: GetCategoryRows
public static List<string[][]> GetCategoryRows(IMatrixData mdata)
{
List<string[][]> result = new List<string[][]>();
for (int index = 0; index < mdata.CategoryRowCount; index++){
result.Add(mdata.GetCategoryRowAt(index));
}
return result;
}
示例11: FillMatrixDontKeep
private static void FillMatrixDontKeep(int groupColInd, int validVals, IMatrixData mdata,
Func<IList<double>, double> func)
{
string[][] groupCol = mdata.GetCategoryRowAt(groupColInd);
string[] groupNames = ArrayUtils.UniqueValuesPreserveOrder(groupCol);
int[][] colInds = PerseusPluginUtils.GetExpressionColIndices(groupCol, groupNames);
float[,] newExCols = new float[mdata.RowCount,groupNames.Length];
float[,] newQuality = new float[mdata.RowCount,groupNames.Length];
bool[,] newImputed = new bool[mdata.RowCount,groupNames.Length];
for (int i = 0; i < newExCols.GetLength(0); i++){
for (int j = 0; j < newExCols.GetLength(1); j++){
List<double> vals = new List<double>();
List<bool> imps = new List<bool>();
foreach (int ind in colInds[j]){
double val = mdata[i, ind];
if (!double.IsNaN(val) && !double.IsInfinity(val)){
vals.Add(val);
imps.Add(mdata.IsImputed[i, ind]);
}
}
bool imp = false;
float xy = float.NaN;
if (vals.Count >= validVals){
xy = (float) func(vals);
imp = ArrayUtils.Or(imps);
}
newExCols[i, j] = xy;
newQuality[i, j] = float.NaN;
newImputed[i, j] = imp;
}
}
mdata.ExpressionColumnNames = new List<string>(groupNames);
mdata.ExpressionColumnDescriptions = GetEmpty(groupNames);
mdata.ExpressionValues = newExCols;
mdata.QualityValues = newQuality;
mdata.IsImputed = newImputed;
mdata.RemoveCategoryRowAt(groupColInd);
for (int i = 0; i < mdata.CategoryRowCount; i++){
mdata.SetCategoryRowAt(AverageCategoryRow(mdata.GetCategoryRowAt(i), colInds), i);
}
for (int i = 0; i < mdata.NumericRows.Count; i++){
mdata.NumericRows[i] = AverageNumericRow(mdata.NumericRows[i], colInds);
}
}
示例12: StringToExpression
private static void StringToExpression(IList<int> colInds, IMatrixData mdata)
{
int[] inds = ArrayUtils.Complement(colInds, mdata.StringColumnCount);
string[] names = ArrayUtils.SubArray(mdata.StringColumnNames, colInds);
string[] descriptions = ArrayUtils.SubArray(mdata.StringColumnDescriptions, colInds);
string[][] str = ArrayUtils.SubArray(mdata.StringColumns, colInds);
float[][] newEx = new float[str.Length][];
for (int j = 0; j < str.Length; j++){
newEx[j] = new float[str[j].Length];
for (int i = 0; i < newEx[j].Length; i++){
float f;
bool success = float.TryParse(str[j][i], out f);
newEx[j][i] = success ? f : float.NaN;
}
}
float[,] newExp = new float[mdata.RowCount,mdata.ExpressionColumnCount + str.Length];
float[,] newQual = new float[mdata.RowCount,mdata.ExpressionColumnCount + str.Length];
bool[,] newIsImputed = new bool[mdata.RowCount,mdata.ExpressionColumnCount + str.Length];
for (int i = 0; i < mdata.RowCount; i++){
for (int j = 0; j < mdata.ExpressionColumnCount; j++){
newExp[i, j] = mdata[i, j];
newQual[i, j] = mdata.QualityValues[i, j];
newIsImputed[i, j] = mdata.IsImputed[i, j];
}
for (int j = 0; j < newEx.Length; j++){
newExp[i, j + mdata.ExpressionColumnCount] = newEx[j][i];
newQual[i, j + mdata.ExpressionColumnCount] = float.NaN;
newIsImputed[i, j + mdata.ExpressionColumnCount] = false;
}
}
mdata.ExpressionValues = newExp;
mdata.QualityValues = newQual;
mdata.IsImputed = newIsImputed;
mdata.ExpressionColumnNames.AddRange(names);
mdata.ExpressionColumnDescriptions.AddRange(descriptions);
mdata.StringColumns = ArrayUtils.SubList(mdata.StringColumns, inds);
mdata.StringColumnNames = ArrayUtils.SubList(mdata.StringColumnNames, inds);
mdata.StringColumnDescriptions = ArrayUtils.SubList(mdata.StringColumnDescriptions, inds);
for (int i = 0; i < mdata.CategoryRowCount; i++){
mdata.SetCategoryRowAt(ExtendCategoryRow(mdata.GetCategoryRowAt(i), str.Length),i);
}
for (int i = 0; i < mdata.NumericRows.Count; i++){
mdata.NumericRows[i] = ExtendNumericRow(mdata.NumericRows[i], str.Length);
}
}
示例13: GetIndicesOfCol
public static int[] GetIndicesOfCol(IMatrixData data, string categoryName, HashSet<string> values)
{
int index = GetIndexOfCol(data, categoryName);
List<int> result = new List<int>();
for (int i = 0; i < data.ExpressionColumnCount; i++){
string[] s = data.GetCategoryRowAt(index)[i];
foreach (string s1 in s){
if (values.Contains(s1)){
result.Add(i);
break;
}
}
}
return result.ToArray();
}
示例14: ProcessData
public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables,
ref IDocumentData[] documents, ProcessInfo processInfo)
{
SingleChoiceWithSubParams xp = param.GetSingleChoiceWithSubParams("Expression column selection");
bool groups = xp.Value == 2;
string[] groupNames = null;
int[][] colIndsGroups = null;
if (groups){
int groupRowInd = xp.GetSubParameters().GetSingleChoiceParam("Group").Value;
string[][] groupCol = mdata.GetCategoryRowAt(groupRowInd);
groupNames = ArrayUtils.UniqueValuesPreserveOrder(groupCol);
colIndsGroups = PerseusPluginUtils.GetExpressionColIndices(groupCol, groupNames);
}
int[] useCols = xp.Value == 1
? xp.GetSubParameters().GetMultiChoiceParam("Columns").Value
: ArrayUtils.ConsecutiveInts(mdata.ExpressionColumnCount);
HashSet<int> w = ArrayUtils.ToHashSet(param.GetMultiChoiceParam("Calculate").Value);
bool[] include = new bool[procs.Length];
double[][] columns = new double[procs.Length][];
double[][][] columnsG = null;
if (groups){
columnsG = new double[procs.Length][][];
for (int i = 0; i < columnsG.Length; i++){
columnsG[i] = new double[groupNames.Length][];
}
}
for (int i = 0; i < include.Length; i++){
include[i] = w.Contains(i);
if (include[i]){
columns[i] = new double[mdata.RowCount];
if (groups){
for (int j = 0; j < groupNames.Length; j++){
columnsG[i][j] = new double[mdata.RowCount];
}
}
}
}
for (int i = 0; i < mdata.RowCount; i++){
List<double> v = new List<double>();
foreach (int j in useCols){
double x = mdata[i, j];
if (!double.IsNaN(x) && !double.IsInfinity(x)){
v.Add(x);
}
}
for (int j = 0; j < include.Length; j++){
if (include[j]){
columns[j][i] = procs[j].Item2(v);
}
}
if (groups){
List<double>[] vg = new List<double>[groupNames.Length];
for (int j = 0; j < colIndsGroups.Length; j++){
vg[j] = new List<double>();
for (int k = 0; k < colIndsGroups[j].Length; k++){
double x = mdata[i, colIndsGroups[j][k]];
if (!double.IsNaN(x) && !double.IsInfinity(x)){
vg[j].Add(x);
}
}
}
for (int j = 0; j < include.Length; j++){
if (include[j]){
for (int k = 0; k < groupNames.Length; k++){
columnsG[j][k][i] = procs[j].Item2(vg[k]);
}
}
}
}
}
for (int i = 0; i < include.Length; i++){
if (include[i]){
mdata.AddNumericColumn(procs[i].Item1, procs[i].Item3, columns[i]);
if (groups){
for (int k = 0; k < groupNames.Length; k++){
mdata.AddNumericColumn(procs[i].Item1 + " " + groupNames[k], procs[i].Item3, columnsG[i][k]);
}
}
}
}
}
示例15: GetCategoryRows
private static List<string[][]> GetCategoryRows(IMatrixData mdata)
{
List<string[][]> result = new List<string[][]>();
for (int i = 0; i < mdata.CategoryRowCount; i++){
result.Add(mdata.GetCategoryRowAt(i));
}
return result;
}