本文整理汇总了C#中IMatrixData类的典型用法代码示例。如果您正苦于以下问题:C# IMatrixData类的具体用法?C# IMatrixData怎么用?C# IMatrixData使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
IMatrixData类属于命名空间,在下文中一共展示了IMatrixData类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: GetParameters
public Parameters GetParameters(IMatrixData mdata, ref string errorString)
{
List<Parameter> par = new List<Parameter>();
foreach (string t in mdata.ColumnNames){
string help = "Specify the new name for the column '" + t + "'.";
par.Add(new StringParam(t){Value = t, Help = help});
}
foreach (string t in mdata.NumericColumnNames){
string help = "Specify the new name for the column '" + t + "'.";
par.Add(new StringParam(t){Value = t, Help = help});
}
foreach (string t in mdata.CategoryColumnNames){
string help = "Specify the new name for the column '" + t + "'.";
par.Add(new StringParam(t){Value = t, Help = help});
}
foreach (string t in mdata.StringColumnNames){
string help = "Specify the new name for the column '" + t + "'.";
par.Add(new StringParam(t){Value = t, Help = help});
}
foreach (string t in mdata.MultiNumericColumnNames){
string help = "Specify the new name for the column '" + t + "'.";
par.Add(new StringParam(t){Value = t, Help = help});
}
return new Parameters(par);
}
示例2: SubtractValues
public static void SubtractValues(bool rows, Func<double[], double> summarize, IMatrixData data)
{
if (rows){
for (int i = 0; i < data.RowCount; i++){
List<double> vals = new List<double>();
for (int j = 0; j < data.ExpressionColumnCount; j++){
double q = data[i, j];
if (!double.IsNaN(q) && !double.IsInfinity(q)){
vals.Add(q);
}
}
double med = summarize(vals.ToArray());
for (int j = 0; j < data.ExpressionColumnCount; j++){
data[i, j] -= (float) med;
}
}
} else{
for (int j = 0; j < data.ExpressionColumnCount; j++){
List<double> vals = new List<double>();
for (int i = 0; i < data.RowCount; i++){
double q = data[i, j];
if (!double.IsNaN(q) && !double.IsInfinity(q)){
vals.Add(q);
}
}
double med = summarize(vals.ToArray());
for (int i = 0; i < data.RowCount; i++){
data[i, j] -= (float) med;
}
}
}
}
示例3: ReplaceMissingsByGaussianWholeMatrix
public static string ReplaceMissingsByGaussianWholeMatrix(double width, double shift, IMatrixData data, int[] colInds)
{
List<float> allValues = new List<float>();
for (int i = 0; i < data.RowCount; i++){
foreach (int t in colInds){
float x = GetValue(data, i, t);
if (!float.IsNaN(x) && !float.IsInfinity(x)){
allValues.Add(x);
}
}
}
double stddev;
double mean = ArrayUtils.MeanAndStddev(allValues.ToArray(), out stddev);
if (double.IsNaN(mean) || double.IsInfinity(mean) || double.IsNaN(stddev) || double.IsInfinity(stddev)){
return "Imputation failed since mean and standard deviation could not be calculated.";
}
double m = mean - shift*stddev;
double s = stddev*width;
Random2 r = new Random2();
for (int i = 0; i < data.RowCount; i++){
foreach (int colInd in colInds){
float x = GetValue(data, i, colInd);
if (float.IsNaN(x) || float.IsInfinity(x)){
if (colInd < data.ColumnCount){
data.Values.Set(i, colInd, (float) r.NextGaussian(m, s));
data.IsImputed[i, colInd] = true;
} else{
data.NumericColumns[colInd - data.ColumnCount][i] = r.NextGaussian(m, s);
}
}
}
}
return null;
}
示例4: UnitVectors
public void UnitVectors(bool rows, IMatrixData data)
{
if (rows){
for (int i = 0; i < data.RowCount; i++){
double len = 0;
for (int j = 0; j < data.ColumnCount; j++){
double q = data.Values.Get(i, j);
len += q*q;
}
len = Math.Sqrt(len);
for (int j = 0; j < data.ColumnCount; j++){
data.Values.Set(i, j, data.Values.Get(i, j)/(float) len);
}
}
} else{
for (int j = 0; j < data.ColumnCount; j++){
double len = 0;
for (int i = 0; i < data.RowCount; i++){
double q = data.Values.Get(i, j);
len += q*q;
}
len = Math.Sqrt(len);
for (int i = 0; i < data.RowCount; i++){
data.Values.Set(i, j, data.Values.Get(i, j) / (float) len);
}
}
}
}
示例5: ProcessData
public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables,
ref IDocumentData[] documents, ProcessInfo processInfo)
{
Parameter<int> access = param.GetParam<int>("Matrix access");
bool rows = access.Value == 0;
UnitVectors(rows, mdata);
}
示例6: MatrixDataTable
public MatrixDataTable(IMatrixData mdata)
: base(mdata.Name, mdata.Description, mdata.RowCount)
{
this.mdata = mdata;
CreateColumns();
CreateAnnotationRows();
}
示例7: GetParameters
public Parameters GetParameters(IMatrixData mdata, ref string errorString)
{
Parameters[] subParams = new Parameters[mdata.CategoryColumnCount];
for (int i = 0; i < mdata.CategoryColumnCount; i++){
string[] values = mdata.GetCategoryColumnValuesAt(i);
int[] sel = values.Length == 1 ? new[]{0} : new int[0];
subParams[i] =
new Parameters(new Parameter[]{
new MultiChoiceParam("Values", sel){
Values = values,
Help = "The value that should be present to discard/keep the corresponding row."
}
});
}
return
new Parameters(new SingleChoiceWithSubParams("Column"){
Values = mdata.CategoryColumnNames,
SubParams = subParams,
Help = "The categorical column that the filtering should be based on.",
ParamNameWidth = 50,
TotalWidth = 731
}, new SingleChoiceParam("Mode"){
Values = new[]{"Remove matching rows", "Keep matching rows"},
Help =
"If 'Remove matching rows' is selected, rows having the values specified above will be removed while " +
"all other rows will be kept. If 'Keep matching rows' is selected, the opposite will happen."
}, PerseusPluginUtils.GetFilterModeParam(true));
}
示例8: GetParameters
public Parameters GetParameters(IMatrixData mdata, ref string errorString)
{
List<string> colChoice = mdata.StringColumnNames;
int colInd = 0;
for (int i = 0; i < colChoice.Count; i++){
if (colChoice[i].ToUpper().Equals("UNIPROT")){
colInd = i;
break;
}
}
int colSeqInd = 0;
for (int i = 0; i < colChoice.Count; i++){
if (colChoice[i].ToUpper().Equals("SEQUENCE WINDOW")){
colSeqInd = i;
break;
}
}
return
new Parameters(
new SingleChoiceParam("Uniprot column"){
Value = colInd,
Help = "Specify here the column that contains Uniprot identifiers.",
Values = colChoice
},
new SingleChoiceParam("Sequence window"){
Value = colSeqInd,
Help = "Specify here the column that contains the sequence windows around the site.",
Values = colChoice
});
}
示例9: GetParameters
public Parameters GetParameters(IMatrixData mdata, ref string errorString)
{
List<string> numRows = mdata.NumericRowNames;
List<string> multiNumRows = mdata.MultiNumericRowNames;
List<string> catRows = mdata.CategoryRowNames;
List<string> textRows = mdata.StringRowNames;
return
new Parameters(new Parameter[]{
new MultiChoiceParam("Numerical rows"){
Value = ArrayUtils.ConsecutiveInts(numRows.Count),
Values = numRows,
Help = "Specify here the new order in which the numerical rows should appear."
},
new MultiChoiceParam("Multi-numerical rows"){
Value = ArrayUtils.ConsecutiveInts(multiNumRows.Count),
Values = multiNumRows,
Help = "Specify here the new order in which the numerical rows should appear."
},
new MultiChoiceParam("Categorical rows"){
Value = ArrayUtils.ConsecutiveInts(catRows.Count),
Values = catRows,
Help = "Specify here the new order in which the categorical rows should appear."
},
new MultiChoiceParam("Text rows"){
Value = ArrayUtils.ConsecutiveInts(textRows.Count),
Values = textRows,
Help = "Specify here the new order in which the text rows should appear."
}
});
}
示例10: ProcessData
public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables,
ref IDocumentData[] documents, ProcessInfo processInfo)
{
const bool rows = false;
bool percentage;
int minValids = PerseusPluginUtils.GetMinValids(param, out percentage);
ParameterWithSubParams<int> modeParam = param.GetParamWithSubParams<int>("Mode");
int modeInd = modeParam.Value;
if (modeInd != 0 && mdata.CategoryRowNames.Count == 0){
processInfo.ErrString = "No grouping is defined.";
return;
}
if (modeInd != 0){
processInfo.ErrString = "Group-wise filtering can only be appled to rows.";
return;
}
FilteringMode filterMode;
double threshold;
double threshold2;
PerseusPluginUtils.ReadValuesShouldBeParams(param, out filterMode, out threshold, out threshold2);
if (modeInd != 0){
//TODO
} else{
PerseusPluginUtils.NonzeroFilter1(rows, minValids, percentage, mdata, param, threshold, threshold2, filterMode);
}
}
示例11: GetParameters
public Parameters GetParameters(IMatrixData[] inputData, ref string errString)
{
IMatrixData matrixData1 = inputData[0];
IMatrixData matrixData2 = inputData[1];
return
new Parameters(new Parameter[]{
new SingleChoiceParam("Column in matrix 1 to be edited"){
Values = matrixData1.StringColumnNames,
Value = 0,
Help =
"The column in the first matrix in which strings will be replaced " +
"according to the key-value table specified in matrix 2."
},
new SingleChoiceParam("Keys in matrix 2"){
Values = matrixData2.StringColumnNames,
Value = 0,
Help = "The keys for the replacement table."
},
new SingleChoiceParam("Values in matrix 2"){
Values = matrixData2.StringColumnNames,
Value = 1,
Help = "The values for the replacement table."
}
});
}
示例12: ProcessData
public void ProcessData(IMatrixData mdata, Parameters param, ref IMatrixData[] supplTables,
ref IDocumentData[] documents, ProcessInfo processInfo)
{
Random2 rand = new Random2();
double std = param.GetParam<double>("Standard deviation").Value;
int[] inds = param.GetParam<int[]>("Columns").Value;
List<int> mainInds = new List<int>();
List<int> numInds = new List<int>();
foreach (int ind in inds){
if (ind < mdata.ColumnCount){
mainInds.Add(ind);
} else{
numInds.Add(ind - mdata.ColumnCount);
}
}
foreach (int j in mainInds){
for (int i = 0; i < mdata.RowCount; i++){
mdata.Values.Set(i, j, mdata.Values.Get(i, j) + (float) rand.NextGaussian(0, std));
}
}
foreach (int j in numInds){
for (int i = 0; i < mdata.RowCount; i++){
mdata.NumericColumns[j][i] += (float) rand.NextGaussian(0, std);
}
}
}
示例13: DivideByColumn
public static void DivideByColumn(IMatrixData data, int index)
{
int p = data.RowCount;
int n = data.ExpressionColumnCount;
float[,] newEx = new float[p,n - 1];
for (int i = 0; i < p; i++){
for (int j = 0; j < index; j++){
newEx[i, j] = data[i, j] - data[i, index];
}
for (int j = index + 1; j < n; j++){
newEx[i, j - 1] = data[i, j] - data[i, index];
}
}
bool[,] newImp = new bool[p,n - 1];
for (int i = 0; i < p; i++){
for (int j = 0; j < index; j++){
newImp[i, j] = data.IsImputed[i, j] || data.IsImputed[i, index];
}
for (int j = index + 1; j < n; j++){
newImp[i, j - 1] = data.IsImputed[i, j] || data.IsImputed[i, index];
}
}
data.ExpressionValues = newEx;
data.IsImputed = newImp;
data.ExpressionColumnNames.RemoveAt(index);
data.ExpressionColumnDescriptions.RemoveAt(index);
for (int i = 0; i < data.CategoryRowCount; i++){
data.CategoryColumns[i] = ArrayUtils.RemoveAtIndex(data.CategoryColumns[i], index);
}
for (int i = 0; i < data.NumericRowCount; i++){
data.NumericColumns[i] = ArrayUtils.RemoveAtIndex(data.NumericColumns[i], index);
}
}
示例14: GetParameters
public Parameters GetParameters(IMatrixData mdata, ref string errorString)
{
string[] vals = ArrayUtils.Concat(mdata.ColumnNames, mdata.NumericColumnNames);
int[] sel1 = vals.Length > 0 ? new[]{0} : new int[0];
int[] sel2 = vals.Length > 1 ? new[]{1} : (vals.Length > 0 ? new[]{0} : new int[0]);
return
new Parameters(new Parameter[]{
new MultiChoiceParam("x", sel1){
Values = vals,
Repeats = true,
Help =
"Colums for the first dimension. Multiple choices can be made leading to the creation of multiple density maps."
},
new MultiChoiceParam("y", sel2){
Values = vals,
Repeats = true,
Help = "Colums for the second dimension. The number has to be the same as for the 'Column 1' parameter."
},
new IntParam("Number of points", 300){
Help =
"This parameter defines the resolution of the density map. It specifies the number of pixels per dimension. Large " +
"values may lead to increased computing times."
},
new SingleChoiceParam("Distribution type"){Values = new[]{"P(x,y)", "P(y|x)", "P(x|y)", "P(x,y)/(P(x)*P(y))"}}
});
}
示例15: GetParameters
public Parameters GetParameters(IMatrixData mdata, ref string errorString)
{
return
new Parameters(new Parameter[]{
new StringParam("Find what"), new SingleChoiceParam("Look in"){Values = mdata.StringColumnNames},
new BoolParam("Match case"){Value = true}, new BoolParam("Match whole word")
});
}