本文整理汇总了C#中IGraph.Exists方法的典型用法代码示例。如果您正苦于以下问题:C# IGraph.Exists方法的具体用法?C# IGraph.Exists怎么用?C# IGraph.Exists使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类IGraph
的用法示例。
在下文中一共展示了IGraph.Exists方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: TopologicalSort
/// <summary>
/// The topological sort procedure for DAG.
/// </summary>
/// <param name="dag">a directed acyclic graph (DAG) with vertices numbered 1 to n.</param>
/// <returns>
/// A linear order of the vertices such that u appears before v in the linear order,
/// if (u, v) is an edge in the graph.
/// </returns>
public static List<int> TopologicalSort(IGraph dag)
{
// the initialization (to 0) is done by default //
int[] inDegree = new int[dag.N];
var linear = new List<int>();
var next = new Stack<int>();
foreach (var u in dag.Vertices)
foreach (var v in dag[u])
{
if (dag.Exists(u, v))
inDegree[v]++;
}
for (int i = 0; i < inDegree.Length; ++i)
{
if (inDegree[i] == 0)
next.Push(i);
}
while (next.Count > 0)
{
var u = next.Pop();
linear.Add(u);
foreach (var v in dag.Vertices)
{
if (dag.Exists(u, v))
inDegree[v]--;
if (!linear.Contains(v) && !next.Contains(v) && inDegree[v] == 0)
next.Push(v);
}
}
return linear;
}
示例2: ShortestPath
/// <summary>
/// The DAG shortest path procedure.
/// </summary>
/// <param name="dag">a weighted directed acyclic graph containing a set V of n vertices and a set E of m directed edges.</param>
/// <param name="sourceVertix">a source vertex in V.</param>
/// <remarks>
/// For each non-source vertex v in V, shortest[v] is the weight sp(s,v) of a shortest path from s to v and pred(v) is the vertex
/// preceding v on some shortest path.
/// For the source vertex s, shortest(s) = 0 and pred(s) = NULL.
/// If there is no path from s to v, then shortest[v] = infinity, and pred(v) = NULL.
/// </remarks>
public void ShortestPath(IGraph dag, int sourceVertix)
{
var linear = TopologicalSort(dag);
Graph.Shortest = new double[dag.N];
Graph.Predecessors = new int?[dag.N];
for (int i = 0; i < Shortest.Length; ++i)
{
Shortest[i] = double.PositiveInfinity;
Graph.Predecessors[i] = null;
}
Shortest[sourceVertix] = 0;
foreach (var u in linear)
{
foreach (var v in dag.Vertices)
if (dag.Exists(u, v))
Graph.Relax(dag, u, v);
}
}