当前位置: 首页>>代码示例>>C#>>正文


C# HiddenConditionalRandomField.Save方法代码示例

本文整理汇总了C#中HiddenConditionalRandomField.Save方法的典型用法代码示例。如果您正苦于以下问题:C# HiddenConditionalRandomField.Save方法的具体用法?C# HiddenConditionalRandomField.Save怎么用?C# HiddenConditionalRandomField.Save使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在HiddenConditionalRandomField的用法示例。


在下文中一共展示了HiddenConditionalRandomField.Save方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: SaveLoadTest

        public void SaveLoadTest()
        {
            double[][] hello =
            {
                new double[] { 1.0, 0.1, 0.0, 0.0 }, // let's say the word
                new double[] { 0.0, 1.0, 0.1, 0.1 }, // hello took 6 frames
                new double[] { 0.0, 1.0, 0.1, 0.1 }, // to be recorded.
                new double[] { 0.0, 0.0, 1.0, 0.0 },
                new double[] { 0.0, 0.0, 1.0, 0.0 },
                new double[] { 0.0, 0.0, 0.1, 1.1 },
            };

            double[][] car =
            {
                new double[] { 0.0, 0.0, 0.0, 1.0 }, // the car word
                new double[] { 0.1, 0.0, 1.0, 0.1 }, // took only 4.
                new double[] { 0.0, 0.0, 0.1, 0.0 },
                new double[] { 1.0, 0.0, 0.0, 0.0 },
            };

            double[][] wardrobe =
            {
                new double[] { 0.0, 0.0, 1.0, 0.0 }, // same for the
                new double[] { 0.1, 0.0, 1.0, 0.1 }, // wardrobe word.
                new double[] { 0.0, 0.1, 1.0, 0.0 },
                new double[] { 0.1, 0.0, 1.0, 0.1 },
            };

            double[][][] words = { hello, car, wardrobe };

            int[] labels = { 0, 1, 2 };

            var initial = new Independent
            (
                new NormalDistribution(0, 1),
                new NormalDistribution(0, 1),
                new NormalDistribution(0, 1),
                new NormalDistribution(0, 1)
            );

            int numberOfWords = 3;
            int numberOfStates = 5;

            var classifier = new HiddenMarkovClassifier<Independent>
            (
               classes: numberOfWords,
               topology: new Forward(numberOfStates),
               initial: initial
            );

            var teacher = new HiddenMarkovClassifierLearning<Independent>(classifier,
                modelIndex => new BaumWelchLearning<Independent>(classifier.Models[modelIndex])
                {
                    Tolerance = 0.001,
                    Iterations = 100,
                    FittingOptions = new IndependentOptions()
                    {
                        InnerOption = new NormalOptions() { Regularization = 1e-5 }
                    }
                }
            );

            double logLikelihood = teacher.Run(words, labels);

            var function = new MarkovMultivariateFunction(classifier);
            var hcrf = new HiddenConditionalRandomField<double[]>(function);


            MemoryStream stream = new MemoryStream();

            hcrf.Save(stream);

            stream.Seek(0, SeekOrigin.Begin);

            var target = HiddenConditionalRandomField<double[]>.Load(stream);

            Assert.AreEqual(hcrf.Function.Factors.Length, target.Function.Factors.Length);
            for (int i = 0; i < hcrf.Function.Factors.Length; i++)
            {
                var e = hcrf.Function.Factors[i];
                var a = target.Function.Factors[i];
                Assert.AreEqual(e.Index, target.Function.Factors[i].Index);
                Assert.AreEqual(e.States, target.Function.Factors[i].States);

                Assert.AreEqual(e.EdgeParameters.Count, a.EdgeParameters.Count);
                Assert.AreEqual(e.EdgeParameters.Offset, a.EdgeParameters.Offset);
                Assert.AreEqual(e.FactorParameters.Count, a.FactorParameters.Count);
                Assert.AreEqual(e.FactorParameters.Offset, a.FactorParameters.Offset);

                Assert.AreEqual(e.OutputParameters.Count, a.OutputParameters.Count);
                Assert.AreEqual(e.OutputParameters.Offset, a.OutputParameters.Offset);
                Assert.AreEqual(e.StateParameters.Count, a.StateParameters.Count);
                Assert.AreEqual(e.StateParameters.Offset, a.StateParameters.Offset);

                Assert.AreEqual(target.Function, a.Owner);
                Assert.AreEqual(hcrf.Function, e.Owner);    
            }
            
            Assert.AreEqual(hcrf.Function.Features.Length, target.Function.Features.Length);
            for (int i = 0; i < hcrf.Function.Factors.Length; i++)
//.........这里部分代码省略.........
开发者ID:accord-net,项目名称:framework,代码行数:101,代码来源:HiddenConditionalRandomFieldTest.cs


注:本文中的HiddenConditionalRandomField.Save方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。