当前位置: 首页>>代码示例>>C#>>正文


C# HiddenConditionalRandomField.LogLikelihood方法代码示例

本文整理汇总了C#中HiddenConditionalRandomField.LogLikelihood方法的典型用法代码示例。如果您正苦于以下问题:C# HiddenConditionalRandomField.LogLikelihood方法的具体用法?C# HiddenConditionalRandomField.LogLikelihood怎么用?C# HiddenConditionalRandomField.LogLikelihood使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在HiddenConditionalRandomField的用法示例。


在下文中一共展示了HiddenConditionalRandomField.LogLikelihood方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: RunTest

        public void RunTest()
        {
            var inputs = QuasiNewtonHiddenLearningTest.inputs;
            var outputs = QuasiNewtonHiddenLearningTest.outputs;

            HiddenMarkovClassifier hmm = HiddenMarkovClassifierPotentialFunctionTest.CreateModel1();
            var function = new MarkovDiscreteFunction(hmm);

            var model = new HiddenConditionalRandomField<int>(function);
            var target = new HiddenGradientDescentLearning<int>(model);
            target.LearningRate = 1000;

            double[] actual = new double[inputs.Length];
            double[] expected = new double[inputs.Length];

            for (int i = 0; i < inputs.Length; i++)
            {
                actual[i] = model.Compute(inputs[i]);
                expected[i] = outputs[i];
            }

            for (int i = 0; i < inputs.Length; i++)
                Assert.AreEqual(expected[i], actual[i]);

            double ll0 = model.LogLikelihood(inputs, outputs);

            double error = Double.NegativeInfinity;
            for (int i = 0; i < 50; i++)
                error = target.RunEpoch(inputs, outputs);

            double ll1 = model.LogLikelihood(inputs, outputs);

            for (int i = 0; i < inputs.Length; i++)
            {
                actual[i] = model.Compute(inputs[i]);
                expected[i] = outputs[i];
            }

            Assert.AreEqual(-0.00046872579976353634, ll0, 1e-10);
            Assert.AreEqual(0.00027018722449589916, error, 1e-10);
            Assert.IsFalse(Double.IsNaN(ll0));
            Assert.IsFalse(Double.IsNaN(error));

            for (int i = 0; i < inputs.Length; i++)
                Assert.AreEqual(expected[i], actual[i]);

            Assert.IsTrue(ll1 > ll0);
        }
开发者ID:qusma,项目名称:framework,代码行数:48,代码来源:GradientDescentHiddenLearningTest.cs

示例2: RunTest

        public void RunTest()
        {
            var inputs = QuasiNewtonHiddenLearningTest.inputs;
            var outputs = QuasiNewtonHiddenLearningTest.outputs;

            HiddenMarkovClassifier hmm = DiscreteHiddenMarkovClassifierPotentialFunctionTest.CreateModel1();
            var function = new MarkovDiscreteFunction(hmm);

            var model = new HiddenConditionalRandomField<int>(function);
            var target = new HiddenConjugateGradientLearning<int>(model);

            double[] actual = new double[inputs.Length];
            double[] expected = new double[inputs.Length];

            for (int i = 0; i < inputs.Length; i++)
            {
                actual[i] = model.Compute(inputs[i]);
                expected[i] = outputs[i];
            }

            for (int i = 0; i < inputs.Length; i++)
                Assert.AreEqual(expected[i], actual[i]);

            double ll0 = model.LogLikelihood(inputs, outputs);

            double error = target.Run(inputs, outputs);

            double ll1 = model.LogLikelihood(inputs, outputs);

            for (int i = 0; i < inputs.Length; i++)
            {
                actual[i] = model.Compute(inputs[i]);
                expected[i] = outputs[i];
            }

            Assert.AreEqual(-0.0019419916698781847, ll0, 1e-10);
            Assert.AreEqual(0.00050271005636426391, error, 1e-10);
            Assert.AreEqual(error, -ll1);
            Assert.IsFalse(Double.IsNaN(ll0));
            Assert.IsFalse(Double.IsNaN(error));

            for (int i = 0; i < inputs.Length; i++)
                Assert.AreEqual(expected[i], actual[i]);

            Assert.IsTrue(ll1 > ll0);
        }
开发者ID:RLaumeyer,项目名称:framework,代码行数:46,代码来源:ConjugateGradientHiddenLearningTest.cs

示例3: RunTest

        public void RunTest()
        {
            var hmm = MarkovContinuousFunctionTest.CreateModel1();
            var function = new MarkovContinuousFunction(hmm);

            var model = new HiddenConditionalRandomField<double>(function);
            var target = new HiddenQuasiNewtonLearning<double>(model);

            double[] actual = new double[inputs.Length];
            double[] expected = new double[inputs.Length];

            for (int i = 0; i < inputs.Length; i++)
            {
                actual[i] = model.Compute(inputs[i]);
                expected[i] = outputs[i];
            }

            for (int i = 0; i < inputs.Length; i++)
                Assert.AreEqual(expected[i], actual[i]);

            double llm = hmm.LogLikelihood(inputs, outputs);
            double ll0 = model.LogLikelihood(inputs, outputs);
            Assert.AreEqual(llm, ll0, 1e-10);
            Assert.IsFalse(Double.IsNaN(llm));
            Assert.IsFalse(Double.IsNaN(ll0));

            double error = target.Run(inputs, outputs);
            double ll1 = model.LogLikelihood(inputs, outputs);
            Assert.AreEqual(-ll1, error, 1e-10);
            Assert.IsFalse(Double.IsNaN(ll1));
            Assert.IsFalse(Double.IsNaN(error));

            for (int i = 0; i < inputs.Length; i++)
            {
                actual[i] = model.Compute(inputs[i]);
                expected[i] = outputs[i];
            }

            Assert.AreEqual(-0.0000041736023099758768, ll0, 1e-10);
            
            for (int i = 0; i < inputs.Length; i++)
                Assert.AreEqual(expected[i], actual[i]);

            Assert.IsTrue(ll1 > ll0);
        }
开发者ID:RLaumeyer,项目名称:framework,代码行数:45,代码来源:NormalQuasiNewtonHiddenLearningTest.cs

示例4: RunTest2

        public void RunTest2()
        {
            var inputs = QuasiNewtonHiddenLearningTest.inputs;
            var outputs = QuasiNewtonHiddenLearningTest.outputs;


            Accord.Math.Tools.SetupGenerator(0);

            var function = new MarkovDiscreteFunction(2, 2, 2);

            var model = new HiddenConditionalRandomField<int>(function);
            var target = new HiddenConjugateGradientLearning<int>(model);

            double[] actual = new double[inputs.Length];
            double[] expected = new double[inputs.Length];

            for (int i = 0; i < inputs.Length; i++)
            {
                actual[i] = model.Compute(inputs[i]);
                expected[i] = outputs[i];
            }


            double ll0 = model.LogLikelihood(inputs, outputs);
            double error = target.Run(inputs, outputs);
            double ll1 = model.LogLikelihood(inputs, outputs);

            for (int i = 0; i < inputs.Length; i++)
            {
                actual[i] = model.Compute(inputs[i]);
                expected[i] = outputs[i];
            }


            Assert.AreEqual(-5.5451774444795623, ll0, 1e-10);
            Assert.AreEqual(0, error, 1e-10);
            Assert.IsFalse(double.IsNaN(error));

            for (int i = 0; i < inputs.Length; i++)
                Assert.AreEqual(expected[i], actual[i]);

            Assert.IsTrue(ll1 > ll0);
        }
开发者ID:RLaumeyer,项目名称:framework,代码行数:43,代码来源:ConjugateGradientHiddenLearningTest.cs

示例5: func

 private double func(HiddenConditionalRandomField<double[]> model, double[] parameters, double[][][] inputs, int[] outputs)
 {
     model.Function.Weights = parameters;
     return -model.LogLikelihood(inputs, outputs);
 }
开发者ID:KommuSoft,项目名称:accord_framework,代码行数:5,代码来源:MultivariateNormalQuasiNewtonHiddenLearningTest.cs

示例6: RunTest

        public void RunTest()
        {
            HiddenMarkovClassifier hmm = HiddenMarkovClassifierPotentialFunctionTest.CreateModel1();
            var function = new MarkovDiscreteFunction(hmm);

            var model = new HiddenConditionalRandomField<int>(function);
            var target = new HiddenQuasiNewtonLearning<int>(model);

            double[] actual = new double[inputs.Length];
            double[] expected = new double[inputs.Length];

            for (int i = 0; i < inputs.Length; i++)
            {
                actual[i] = model.Compute(inputs[i]);
                expected[i] = outputs[i];
            }

            for (int i = 0; i < inputs.Length; i++)
                Assert.AreEqual(expected[i], actual[i]);

            double ll0 = model.LogLikelihood(inputs, outputs);

            double error = target.Run(inputs, outputs);

            double ll1 = model.LogLikelihood(inputs, outputs);

            for (int i = 0; i < inputs.Length; i++)
            {
                actual[i] = model.Compute(inputs[i]);
                expected[i] = outputs[i];
            }

            Assert.AreEqual(-0.00046872579976353634, ll0, 1e-10);
            Assert.AreEqual(0.0, error, 1e-10);
            Assert.AreEqual(error, -ll1);
            Assert.IsFalse(Double.IsNaN(ll0));
            Assert.IsFalse(Double.IsNaN(error));

            for (int i = 0; i < inputs.Length; i++)
                Assert.AreEqual(expected[i], actual[i]);

            Assert.IsTrue(ll1 > ll0);
        }
开发者ID:KommuSoft,项目名称:accord_framework,代码行数:43,代码来源:QuasiNewtonHiddenLearningTest.cs

示例7: RunTest

        public void RunTest()
        {
            var hmm = MultivariateNormalHiddenMarkovClassifierPotentialFunctionTest.CreateModel1();
            var function = new MultivariateNormalMarkovClassifierFunction(hmm);

            var model = new HiddenConditionalRandomField<double[]>(function);
            var target = new QuasiNewtonHiddenLearning<double[]>(model);

            var inputs = inputs1;
            var outputs = outputs1;

            double[] actual = new double[inputs.Length];
            double[] expected = new double[inputs.Length];

            for (int i = 0; i < inputs.Length; i++)
            {
                actual[i] = model.Compute(inputs[i]);
                expected[i] = outputs[i];
            }

            for (int i = 0; i < inputs.Length; i++)
                Assert.AreEqual(expected[i], actual[i]);

            double llm = hmm.LogLikelihood(inputs, outputs);
            double ll0 = model.LogLikelihood(inputs, outputs);
            Assert.AreEqual(llm, ll0, 1e-10);
            Assert.IsFalse(double.IsNaN(llm));
            Assert.IsFalse(double.IsNaN(ll0));

            double error = target.RunEpoch(inputs, outputs);
            double ll1 = model.LogLikelihood(inputs, outputs);
            Assert.AreEqual(-ll1, error, 1e-10);
            Assert.IsFalse(double.IsNaN(ll1));
            Assert.IsFalse(double.IsNaN(error));


            for (int i = 0; i < inputs.Length; i++)
            {
                actual[i] = model.Compute(inputs[i]);
                expected[i] = outputs[i];
            }

            Assert.AreEqual(-0.0000041736023117522336, ll0, 1e-10);
            
            Assert.AreEqual(error, -ll1);
            Assert.IsFalse(Double.IsNaN(ll0));
            Assert.IsFalse(Double.IsNaN(error));

            for (int i = 0; i < inputs.Length; i++)
                Assert.AreEqual(expected[i], actual[i]);

            Assert.IsTrue(ll1 > ll0);
        }
开发者ID:xyicheng,项目名称:Accord,代码行数:53,代码来源:MultivariateNormalQuasiNewtonHiddenLearningTest.cs

示例8: ComputeTest3

        public void ComputeTest3()
        {
            var model = CreateModel3();

            var target = new MarkovMultivariateFunction(model);

            var hcrf = new HiddenConditionalRandomField<double[]>(target);


            double actual;
            double expected;

            for (int k = 0; k < 5; k++)
            {
                foreach (var x in sequences2)
                {
                    for (int c = 0; c < model.Classes; c++)
                    {
                        for (int i = 0; i < model[c].States; i++)
                        {
                            // Check initial state transitions
                            double xa = model.Priors[c];
                            double xb = Math.Exp(model[c].Probabilities[i]);
                            double xc = model[c].Emissions[i].ProbabilityDensityFunction(x[0]);
                            expected = xa * xb * xc;
                            actual = Math.Exp(target.Factors[c].Compute(-1, i, x, 0, c));
                            Assert.AreEqual(expected, actual, 1e-6);
                            Assert.IsFalse(double.IsNaN(actual));
                        }

                        for (int t = 1; t < x.Length; t++)
                        {
                            // Check normal state transitions
                            for (int i = 0; i < model[c].States; i++)
                            {
                                for (int j = 0; j < model[c].States; j++)
                                {
                                    expected = Math.Exp(model[c].Transitions[i, j]) * model[c].Emissions[j].ProbabilityDensityFunction(x[t]);
                                    actual = Math.Exp(target.Factors[c].Compute(i, j, x, t, c));
                                    Assert.AreEqual(expected, actual, 1e-6);
                                    Assert.IsFalse(double.IsNaN(actual));
                                }
                            }
                        }

                        actual = Math.Exp(model.LogLikelihood(x, c));
                        expected = Math.Exp(hcrf.LogLikelihood(x, c));
                        Assert.AreEqual(expected, actual, 1e-10);
                        Assert.IsFalse(double.IsNaN(actual));

                        actual = model.Compute(x);
                        expected = hcrf.Compute(x);
                        Assert.AreEqual(expected, actual);
                        Assert.IsFalse(double.IsNaN(actual));
                    }
                }
            }
        }
开发者ID:KommuSoft,项目名称:accord_framework,代码行数:58,代码来源:IndependentHiddenMarkovClassifierFunctionTest.cs

示例9: check4

        private static void check4(double[][][] words, HiddenMarkovClassifier<Independent> model, MarkovMultivariateFunction target, HiddenConditionalRandomField<double[]> hcrf)
        {
            double actual;
            double expected;

            foreach (var x in words)
            {
                for (int c = 0; c < model.Classes; c++)
                {
                    for (int i = 0; i < model[c].States; i++)
                    {
                        // Check initial state transitions
                        double xa = model.Priors[c];
                        double xb = Math.Exp(model[c].Probabilities[i]);
                        double xc = model[c].Emissions[i].ProbabilityDensityFunction(x[0]);
                        expected = xa * xb * xc;
                        actual = Math.Exp(target.Factors[c].Compute(-1, i, x, 0, c));
                        Assert.IsTrue(expected.IsRelativelyEqual(actual, 1e-10));
                        Assert.IsFalse(double.IsNaN(actual));
                    }

                    for (int t = 1; t < x.Length; t++)
                    {
                        // Check normal state transitions
                        for (int i = 0; i < model[c].States; i++)
                        {
                            for (int j = 0; j < model[c].States; j++)
                            {
                                double xb = Math.Exp(model[c].Transitions[i, j]);
                                double xc = model[c].Emissions[j].ProbabilityDensityFunction(x[t]);
                                expected = xb * xc;
                                actual = Math.Exp(target.Factors[c].Compute(i, j, x, t, c));
                                Assert.IsTrue(expected.IsRelativelyEqual(actual, 1e-10));
                                Assert.IsFalse(double.IsNaN(actual));
                            }
                        }
                    }

                    actual = Math.Exp(model.LogLikelihood(x, c));
                    expected = Math.Exp(hcrf.LogLikelihood(x, c));
                    Assert.AreEqual(expected, actual, 1e-10);
                    Assert.IsFalse(double.IsNaN(actual));

                    actual = model.Compute(x);
                    expected = hcrf.Compute(x);
                    Assert.AreEqual(expected, actual);
                    Assert.IsFalse(double.IsNaN(actual));
                }
            }
        }
开发者ID:RLaumeyer,项目名称:framework,代码行数:50,代码来源:IndependentMarkovFunctionTest.cs

示例10: ComputeTest2

        public void ComputeTest2()
        {
            double[][][] sequences;
            int[] labels;
            var model = CreateModel2(out sequences, out labels);

            var target = new MarkovMultivariateFunction(model);
            var hcrf = new HiddenConditionalRandomField<double[]>(target);


            double actual;
            double expected;

            double[][] x = { new double[] { 0, 1.7 }, new double[] { 2, 2.1 } };

            for (int c = 0; c < model.Classes; c++)
            {
                for (int i = 0; i < model[c].States; i++)
                {
                    // Check initial state transitions
                    expected = model.Priors[c] * Math.Exp(model[c].Probabilities[i]) * model[c].Emissions[i].ProbabilityDensityFunction(x[0]);
                    actual = Math.Exp(target.Factors[c].Compute(-1, i, x, 0, c));
                    Assert.AreEqual(expected, actual, 1e-6);
                    Assert.IsFalse(double.IsNaN(actual));
                }

                for (int t = 1; t < x.Length; t++)
                {
                    // Check normal state transitions
                    for (int i = 0; i < model[c].States; i++)
                    {
                        for (int j = 0; j < model[c].States; j++)
                        {
                            double xb = Math.Exp(model[c].Transitions[i, j]);
                            double xc = model[c].Emissions[j].ProbabilityDensityFunction(x[t]);
                            expected = xb * xc;
                            actual = Math.Exp(target.Factors[c].Compute(i, j, x, t, c));
                            Assert.AreEqual(expected, actual, 1e-6);
                            Assert.IsFalse(double.IsNaN(actual));
                        }
                    }
                }

                actual = model.LogLikelihood(x, c);
                expected = hcrf.LogLikelihood(x, c);
                Assert.AreEqual(expected, actual);
                Assert.IsFalse(double.IsNaN(actual));
            }
        }
开发者ID:RLaumeyer,项目名称:framework,代码行数:49,代码来源:IndependentMarkovFunctionTest.cs

示例11: ComputeTest

        public void ComputeTest()
        {
            HiddenMarkovClassifier hmm = HiddenMarkovClassifierPotentialFunctionTest.CreateModel1();

            // Declare some testing data
            int[][] inputs = new int[][]
            {
                new int[] { 0,1,1,0 },   // Class 0
                new int[] { 0,0,1,0 },   // Class 0
                new int[] { 0,1,1,1,0 }, // Class 0
                new int[] { 0,1,0 },     // Class 0

                new int[] { 1,0,0,1 },   // Class 1
                new int[] { 1,1,0,1 },   // Class 1
                new int[] { 1,0,0,0,1 }, // Class 1
                new int[] { 1,0,1 },     // Class 1
            };

            int[] outputs = new int[]
            {
                0,0,0,0, // First four sequences are of class 0
                1,1,1,1, // Last four sequences are of class 1
            };


            var function = new MarkovDiscreteFunction(hmm);
            var target = new HiddenConditionalRandomField<int>(function);


            for (int i = 0; i < inputs.Length; i++)
            {
                int expected = hmm.Compute(inputs[i]);

                int actual = target.Compute(inputs[i]);

                double h0 = hmm.LogLikelihood(inputs[i], 0);
                double h1 = hmm.LogLikelihood(inputs[i], 1);

                double c0 = target.LogLikelihood(inputs[i], 0);
                double c1 = target.LogLikelihood(inputs[i], 1);

                Assert.AreEqual(expected, actual);
                Assert.AreEqual(h0, c0, 1e-10); 
                Assert.AreEqual(h1, c1, 1e-10);

                Assert.IsFalse(double.IsNaN(c0));
                Assert.IsFalse(double.IsNaN(c1));
            }
        }
开发者ID:natepan,项目名称:framework,代码行数:49,代码来源:HiddenConditionalRandomFieldTest.cs

示例12: SimpleGestureRecognitionTest


//.........这里部分代码省略.........
            var hmm = new HiddenMarkovClassifier<Independent<NormalDistribution>>
            (
                classes: numberOfWords, 
                topology: new Forward(numberOfStates), // word classifiers should use a forward topology
                initial: initial
            );

            // Create a new learning algorithm to train the sequence classifier
            var teacher = new HiddenMarkovClassifierLearning<Independent<NormalDistribution>>(hmm,

                // Train each model until the log-likelihood changes less than 0.001
                modelIndex => new BaumWelchLearning<Independent<NormalDistribution>>(hmm.Models[modelIndex])
                {
                    Tolerance = 0.001,
                    Iterations = 100,

                    // This is necessary so the code doesn't blow up when it realize
                    // there is only one sample per word class. But this could also be
                    // needed in normal situations as well.
                    //
                    FittingOptions = new IndependentOptions()
                    {
                        InnerOption = new NormalOptions() { Regularization = 1e-5 }
                    }
                }
            );

            // Finally, we can run the learning algorithm!
            double logLikelihood = teacher.Run(words, labels);

            // At this point, the classifier should be successfully 
            // able to distinguish between our three word classes:
            //
            int tc1 = hmm.Compute(hello);
            int tc2 = hmm.Compute(car);
            int tc3 = hmm.Compute(wardrobe);

            Assert.AreEqual(0, tc1);
            Assert.AreEqual(1, tc2);
            Assert.AreEqual(2, tc3);

            // Now, we can use the Markov classifier to initialize a HCRF
            var function = new MarkovMultivariateFunction(hmm);
            var hcrf = new HiddenConditionalRandomField<double[]>(function);


            // We can check that both are equivalent, although they have
            // formulations that can be learned with different methods
            //
            for (int i = 0; i < words.Length; i++)
            {
                // Should be the same
                int expected = hmm.Compute(words[i]);
                int actual = hcrf.Compute(words[i]);

                // Should be the same
                double h0 = hmm.LogLikelihood(words[i], 0);
                double c0 = hcrf.LogLikelihood(words[i], 0);

                double h1 = hmm.LogLikelihood(words[i], 1);
                double c1 = hcrf.LogLikelihood(words[i], 1);

                double h2 = hmm.LogLikelihood(words[i], 2);
                double c2 = hcrf.LogLikelihood(words[i], 2);

                Assert.AreEqual(expected, actual);
                Assert.AreEqual(h0, c0, 1e-10);
                Assert.IsTrue(h1.IsRelativelyEqual(c1, 1e-10));
                Assert.IsTrue(h2.IsRelativelyEqual(c2, 1e-10));

                Assert.IsFalse(double.IsNaN(c0));
                Assert.IsFalse(double.IsNaN(c1));
                Assert.IsFalse(double.IsNaN(c2));
            }


            // Now we can learn the HCRF using one of the best learning
            // algorithms available, Resilient Backpropagation learning:

            // Create a learning algorithm
            var rprop = new HiddenResilientGradientLearning<double[]>(hcrf)
            {
                Iterations = 50,
                Tolerance = 1e-5
            };

            // Run the algorithm and learn the models
            double error = rprop.Run(words, labels);

            // At this point, the HCRF should be successfully 
            // able to distinguish between our three word classes:
            //
            int hc1 = hcrf.Compute(hello);
            int hc2 = hcrf.Compute(car);
            int hc3 = hcrf.Compute(wardrobe);

            Assert.AreEqual(0, hc1);
            Assert.AreEqual(1, hc2);
            Assert.AreEqual(2, hc3);
        }
开发者ID:accord-net,项目名称:framework,代码行数:101,代码来源:HiddenConditionalRandomFieldTest.cs


注:本文中的HiddenConditionalRandomField.LogLikelihood方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。