本文整理汇总了C#中GpuMat.Download方法的典型用法代码示例。如果您正苦于以下问题:C# GpuMat.Download方法的具体用法?C# GpuMat.Download怎么用?C# GpuMat.Download使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类GpuMat
的用法示例。
在下文中一共展示了GpuMat.Download方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: FindMatch
public static void FindMatch(Image<Gray, Byte> modelImage, Image<Gray, byte> observedImage, out long matchTime, out VectorOfKeyPoint modelKeyPoints, out VectorOfKeyPoint observedKeyPoints, out Matrix<int> indices, out Matrix<byte> mask, out HomographyMatrix homography)
{
int k = 2;
double uniquenessThreshold = 0.8;
SURFDetector surfCPU = new SURFDetector(500, false);
Stopwatch watch;
homography = null;
#if !IOS
if (GpuInvoke.HasCuda)
{
GpuSURFDetector surfGPU = new GpuSURFDetector(surfCPU.SURFParams, 0.01f);
using (GpuImage<Gray, Byte> gpuModelImage = new GpuImage<Gray, byte>(modelImage))
//extract features from the object image
using (GpuMat<float> gpuModelKeyPoints = surfGPU.DetectKeyPointsRaw(gpuModelImage, null))
using (GpuMat<float> gpuModelDescriptors = surfGPU.ComputeDescriptorsRaw(gpuModelImage, null, gpuModelKeyPoints))
using (GpuBruteForceMatcher<float> matcher = new GpuBruteForceMatcher<float>(DistanceType.L2))
{
modelKeyPoints = new VectorOfKeyPoint();
surfGPU.DownloadKeypoints(gpuModelKeyPoints, modelKeyPoints);
watch = Stopwatch.StartNew();
// extract features from the observed image
using (GpuImage<Gray, Byte> gpuObservedImage = new GpuImage<Gray, byte>(observedImage))
using (GpuMat<float> gpuObservedKeyPoints = surfGPU.DetectKeyPointsRaw(gpuObservedImage, null))
using (GpuMat<float> gpuObservedDescriptors = surfGPU.ComputeDescriptorsRaw(gpuObservedImage, null, gpuObservedKeyPoints))
using (GpuMat<int> gpuMatchIndices = new GpuMat<int>(gpuObservedDescriptors.Size.Height, k, 1, true))
using (GpuMat<float> gpuMatchDist = new GpuMat<float>(gpuObservedDescriptors.Size.Height, k, 1, true))
using (GpuMat<Byte> gpuMask = new GpuMat<byte>(gpuMatchIndices.Size.Height, 1, 1))
using (Stream stream = new Stream())
{
matcher.KnnMatchSingle(gpuObservedDescriptors, gpuModelDescriptors, gpuMatchIndices, gpuMatchDist, k, null, stream);
indices = new Matrix<int>(gpuMatchIndices.Size);
mask = new Matrix<byte>(gpuMask.Size);
//gpu implementation of voteForUniquess
using (GpuMat<float> col0 = gpuMatchDist.Col(0))
using (GpuMat<float> col1 = gpuMatchDist.Col(1))
{
GpuInvoke.Multiply(col1, new MCvScalar(uniquenessThreshold), col1, stream);
GpuInvoke.Compare(col0, col1, gpuMask, CMP_TYPE.CV_CMP_LE, stream);
}
observedKeyPoints = new VectorOfKeyPoint();
surfGPU.DownloadKeypoints(gpuObservedKeyPoints, observedKeyPoints);
//wait for the stream to complete its tasks
//We can perform some other CPU intesive stuffs here while we are waiting for the stream to complete.
stream.WaitForCompletion();
gpuMask.Download(mask);
gpuMatchIndices.Download(indices);
if (GpuInvoke.CountNonZero(gpuMask) >= 4)
{
int nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(modelKeyPoints, observedKeyPoints, indices, mask, 1.5, 20);
if (nonZeroCount >= 4)
homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(modelKeyPoints, observedKeyPoints, indices, mask, 2);
}
watch.Stop();
}
}
}
else
#endif
{
//extract features from the object image
modelKeyPoints = new VectorOfKeyPoint();
Matrix<float> modelDescriptors = surfCPU.DetectAndCompute(modelImage, null, modelKeyPoints);
watch = Stopwatch.StartNew();
// extract features from the observed image
observedKeyPoints = new VectorOfKeyPoint();
Matrix<float> observedDescriptors = surfCPU.DetectAndCompute(observedImage, null, observedKeyPoints);
BruteForceMatcher<float> matcher = new BruteForceMatcher<float>(DistanceType.L2);
matcher.Add(modelDescriptors);
indices = new Matrix<int>(observedDescriptors.Rows, k);
using (Matrix<float> dist = new Matrix<float>(observedDescriptors.Rows, k))
{
matcher.KnnMatch(observedDescriptors, indices, dist, k, null);
mask = new Matrix<byte>(dist.Rows, 1);
mask.SetValue(255);
Features2DToolbox.VoteForUniqueness(dist, uniquenessThreshold, mask);
}
int nonZeroCount = CvInvoke.cvCountNonZero(mask);
if (nonZeroCount >= 4)
{
nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(modelKeyPoints, observedKeyPoints, indices, mask, 1.5, 20);
if (nonZeroCount >= 4)
homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(modelKeyPoints, observedKeyPoints, indices, mask, 2);
}
watch.Stop();
}
matchTime = watch.ElapsedMilliseconds;
}
示例2: Draw
/// <summary>
/// Draw the model image and observed image, the matched features and homography projection.
/// </summary>
/// <param name="modelImage">The model image</param>
/// <param name="observedImage">The observed image</param>
/// <param name="matchTime">The output total time for computing the homography matrix.</param>
/// <returns>The model image and observed image, the matched features and homography projection.</returns>
public static Image<Bgr, Byte> Draw(Image<Gray, Byte> modelImage, Image<Gray, byte> observedImage, out long matchTime)
{
Stopwatch watch;
HomographyMatrix homography = null;
SURFDetector surfCPU = new SURFDetector (500, false);
VectorOfKeyPoint modelKeyPoints;
VectorOfKeyPoint observedKeyPoints;
Matrix<int> indices;
Matrix<byte> mask;
int k = 2;
double uniquenessThreshold = 0.8;
if (GpuInvoke.HasCuda) {
GpuSURFDetector surfGPU = new GpuSURFDetector (surfCPU.SURFParams, 0.01f);
using (GpuImage<Gray, Byte> gpuModelImage = new GpuImage<Gray, byte> (modelImage))
//extract features from the object image
using (GpuMat<float> gpuModelKeyPoints = surfGPU.DetectKeyPointsRaw (gpuModelImage, null))
using (GpuMat<float> gpuModelDescriptors = surfGPU.ComputeDescriptorsRaw (gpuModelImage, null, gpuModelKeyPoints))
using (GpuBruteForceMatcher<float> matcher = new GpuBruteForceMatcher<float> (DistanceType.L2)) {
modelKeyPoints = new VectorOfKeyPoint ();
surfGPU.DownloadKeypoints (gpuModelKeyPoints, modelKeyPoints);
watch = Stopwatch.StartNew ();
// extract features from the observed image
using (GpuImage<Gray, Byte> gpuObservedImage = new GpuImage<Gray, byte> (observedImage))
using (GpuMat<float> gpuObservedKeyPoints = surfGPU.DetectKeyPointsRaw (gpuObservedImage, null))
using (GpuMat<float> gpuObservedDescriptors = surfGPU.ComputeDescriptorsRaw (gpuObservedImage, null, gpuObservedKeyPoints))
using (GpuMat<int> gpuMatchIndices = new GpuMat<int> (gpuObservedDescriptors.Size.Height, k, 1, true))
using (GpuMat<float> gpuMatchDist = new GpuMat<float> (gpuObservedDescriptors.Size.Height, k, 1, true))
using (GpuMat<Byte> gpuMask = new GpuMat<byte> (gpuMatchIndices.Size.Height, 1, 1))
using (Stream stream = new Stream ()) {
matcher.KnnMatchSingle (gpuObservedDescriptors, gpuModelDescriptors, gpuMatchIndices, gpuMatchDist, k, null, stream);
indices = new Matrix<int> (gpuMatchIndices.Size);
mask = new Matrix<byte> (gpuMask.Size);
//gpu implementation of voteForUniquess
using (GpuMat<float> col0 = gpuMatchDist.Col (0))
using (GpuMat<float> col1 = gpuMatchDist.Col (1)) {
GpuInvoke.Multiply (col1, new MCvScalar (uniquenessThreshold), col1, stream);
GpuInvoke.Compare (col0, col1, gpuMask, CMP_TYPE.CV_CMP_LE, stream);
}
observedKeyPoints = new VectorOfKeyPoint ();
surfGPU.DownloadKeypoints (gpuObservedKeyPoints, observedKeyPoints);
//wait for the stream to complete its tasks
//We can perform some other CPU intesive stuffs here while we are waiting for the stream to complete.
stream.WaitForCompletion ();
gpuMask.Download (mask);
gpuMatchIndices.Download (indices);
if (GpuInvoke.CountNonZero (gpuMask) >= 4) {
int nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation (modelKeyPoints, observedKeyPoints, indices, mask, 1.5, 20);
if (nonZeroCount >= 4)
homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures (modelKeyPoints, observedKeyPoints, indices, mask, 2);
}
watch.Stop ();
}
}
} else {
//extract features from the object image
modelKeyPoints = surfCPU.DetectKeyPointsRaw (modelImage, null);
Matrix<float> modelDescriptors = surfCPU.ComputeDescriptorsRaw (modelImage, null, modelKeyPoints);
watch = Stopwatch.StartNew ();
// extract features from the observed image
observedKeyPoints = surfCPU.DetectKeyPointsRaw (observedImage, null);
Matrix<float> observedDescriptors = surfCPU.ComputeDescriptorsRaw (observedImage, null, observedKeyPoints);
BruteForceMatcher<float> matcher = new BruteForceMatcher<float> (DistanceType.L2);
matcher.Add (modelDescriptors);
indices = new Matrix<int> (observedDescriptors.Rows, k);
using (Matrix<float> dist = new Matrix<float> (observedDescriptors.Rows, k)) {
matcher.KnnMatch (observedDescriptors, indices, dist, k, null);
mask = new Matrix<byte> (dist.Rows, 1);
mask.SetValue (255);
Features2DToolbox.VoteForUniqueness (dist, uniquenessThreshold, mask);
}
int nonZeroCount = CvInvoke.cvCountNonZero (mask);
if (nonZeroCount >= 4) {
nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation (modelKeyPoints, observedKeyPoints, indices, mask, 1.5, 20);
if (nonZeroCount >= 4)
homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures (modelKeyPoints, observedKeyPoints, indices, mask, 2);
}
watch.Stop ();
}
//.........这里部分代码省略.........
示例3: TestPyrLK
/*
public void TestPyrLK()
{
const int MAX_CORNERS = 500;
Capture c = new Capture();
ImageViewer viewer = new ImageViewer();
Image<Gray, Byte> oldImage = null;
Image<Gray, Byte> currentImage = null;
Application.Idle += new EventHandler(delegate(object sender, EventArgs e)
{
if (oldImage == null)
{
oldImage = c.QueryGrayFrame();
}
currentImage = c.QueryGrayFrame();
Features2D.GFTTDetector detector = new Features2D.GFTTDetector(MAX_CORNERS, 0.05, 3, 3);
//PointF[] features = oldImage.GoodFeaturesToTrack(MAX_CORNERS, 0.05, 3.0, 3, false, 0.04)[0];
PointF[] shiftedFeatures;
Byte[] status;
float[] trackErrors;
CvInvoke.CalcOpticalFlowPyrLK(oldImage, currentImage, features, new Size(9, 9), 3, new MCvTermCriteria(20, 0.05),
out shiftedFeatures, out status, out trackErrors);
Image<Gray, Byte> displayImage = currentImage.Clone();
for (int i = 0; i < features.Length; i++)
displayImage.Draw(new LineSegment2DF(features[i], shiftedFeatures[i]), new Gray(), 2);
oldImage = currentImage;
viewer.Image = displayImage;
});
viewer.ShowDialog();
}*/
public void TestPyrLKGPU()
{
if (!CudaInvoke.HasCuda)
return;
const int MAX_CORNERS = 500;
Capture c = new Capture();
ImageViewer viewer = new ImageViewer();
GpuMat oldImage = null;
GpuMat currentImage = null;
using (CudaGoodFeaturesToTrackDetector detector = new CudaGoodFeaturesToTrackDetector(DepthType.Cv8U, 1, MAX_CORNERS, 0.05, 3.0, 3, false, 0.04))
using (CudaDensePyrLKOpticalFlow flow = new CudaDensePyrLKOpticalFlow(new Size(21, 21), 3, 30, false))
{
Application.Idle += new EventHandler(delegate(object sender, EventArgs e)
{
if (oldImage == null)
{
Mat bgrFrame = c.QueryFrame();
using (GpuMat oldBgrImage = new GpuMat(bgrFrame))
{
oldImage = new GpuMat();
CudaInvoke.CvtColor(oldBgrImage, oldImage, ColorConversion.Bgr2Gray);
}
}
using (Mat tmpFrame = c.QueryFrame())
using (GpuMat tmp = new GpuMat(tmpFrame))
{
currentImage = new GpuMat();
CudaInvoke.CvtColor(tmp, currentImage, ColorConversion.Bgr2Gray);
}
using (GpuMat f = new GpuMat())
using (GpuMat vertex = new GpuMat())
using (GpuMat colors = new GpuMat())
using(GpuMat corners = new GpuMat())
{
flow.Calc(oldImage, currentImage, f);
//CudaInvoke.CreateOpticalFlowNeedleMap(u, v, vertex, colors);
detector.Detect(oldImage, corners, null);
//GpuMat<float> detector.Detect(oldImage, null);
/*
//PointF[] features = oldImage.GoodFeaturesToTrack(MAX_CORNERS, 0.05, 3.0, 3, false, 0.04)[0];
PointF[] shiftedFeatures;
Byte[] status;
float[] trackErrors;
OpticalFlow.PyrLK(oldImage, currentImage, features, new Size(9, 9), 3, new MCvTermCriteria(20, 0.05),
out shiftedFeatures, out status, out trackErrors);
*/
Mat displayImage = new Mat();
currentImage.Download(displayImage);
/*
for (int i = 0; i < features.Length; i++)
displayImage.Draw(new LineSegment2DF(features[i], shiftedFeatures[i]), new Gray(), 2);
*/
oldImage = currentImage;
viewer.Image = displayImage;
}
});
viewer.ShowDialog();
}
//.........这里部分代码省略.........
示例4: Solve
public Image<Gray, byte> Solve(Image<Gray, byte> left, Image<Gray, byte> right)
{
var size = left.Size;
using (var leftGpu = new GpuMat(left.Rows, left.Cols, DepthType.Cv16S, 1))
using (var rightGpu = new GpuMat(left.Rows, left.Cols, DepthType.Cv16S, 1))
using (var disparityGpu = new GpuMat(left.Rows, left.Cols, DepthType.Cv16S, 1))
using (var filteredDisparityGpu = new GpuMat(left.Rows, left.Cols, DepthType.Cv16S, 1))
using (var filteredDisparity16S = new Mat(size, DepthType.Cv16S, 1))
using (var filteredDisparity8U = new Mat(size, DepthType.Cv8U, 1))
{
leftGpu.Upload(left.Mat);
rightGpu.Upload(right.Mat);
algorithm.FindStereoCorrespondence(leftGpu, rightGpu, disparityGpu);
filter.Apply(disparityGpu, leftGpu, filteredDisparityGpu);
filteredDisparityGpu.Download(filteredDisparity16S);
CvInvoke.MinMaxLoc(filteredDisparity16S, ref min, ref max, ref minPosition, ref maxPosition);
filteredDisparity16S.ConvertTo(filteredDisparity8U, DepthType.Cv8U, 255.0/(Max - Min));
return new Image<Gray, byte>(filteredDisparity8U.Bitmap);
}
}
示例5: FindModelImageInObservedImage
public static bool FindModelImageInObservedImage( Image<Gray, byte> modelImage, Image<Gray, byte> observedImage )
{
var surfCpu = new SURFDetector(500, false);
VectorOfKeyPoint modelKeyPoints;
VectorOfKeyPoint observedKeyPoints;
Matrix<int> indices;
Matrix<byte> mask;
int k = 2;
double uniquenessThreshold = 0.8;
if ( GpuInvoke.HasCuda )
{
GpuSURFDetector surfGpu = new GpuSURFDetector(surfCpu.SURFParams, 0.01f);
using ( GpuImage<Gray, byte> gpuModelImage = new GpuImage<Gray, byte>( modelImage ) )
//extract features from the object image
using ( GpuMat<float> gpuModelKeyPoints = surfGpu.DetectKeyPointsRaw( gpuModelImage, null ) )
using ( GpuMat<float> gpuModelDescriptors = surfGpu.ComputeDescriptorsRaw( gpuModelImage, null, gpuModelKeyPoints ) )
using ( GpuBruteForceMatcher<float> matcher = new GpuBruteForceMatcher<float>( DistanceType.L2 ) )
{
modelKeyPoints = new VectorOfKeyPoint();
surfGpu.DownloadKeypoints( gpuModelKeyPoints, modelKeyPoints );
// extract features from the observed image
using ( GpuImage<Gray, byte> gpuObservedImage = new GpuImage<Gray, byte>( observedImage ) )
using ( GpuMat<float> gpuObservedKeyPoints = surfGpu.DetectKeyPointsRaw( gpuObservedImage, null ) )
using ( GpuMat<float> gpuObservedDescriptors = surfGpu.ComputeDescriptorsRaw( gpuObservedImage, null, gpuObservedKeyPoints ) )
using ( GpuMat<int> gpuMatchIndices = new GpuMat<int>( gpuObservedDescriptors.Size.Height, k, 1, true ) )
using ( GpuMat<float> gpuMatchDist = new GpuMat<float>( gpuObservedDescriptors.Size.Height, k, 1, true ) )
using ( GpuMat<Byte> gpuMask = new GpuMat<byte>( gpuMatchIndices.Size.Height, 1, 1 ) )
using ( var stream = new Emgu.CV.GPU.Stream() )
{
matcher.KnnMatchSingle( gpuObservedDescriptors, gpuModelDescriptors, gpuMatchIndices, gpuMatchDist, k, null, stream );
indices = new Matrix<int>( gpuMatchIndices.Size );
mask = new Matrix<byte>( gpuMask.Size );
//gpu implementation of voteForUniquess
using ( GpuMat<float> col0 = gpuMatchDist.Col( 0 ) )
using ( GpuMat<float> col1 = gpuMatchDist.Col( 1 ) )
{
GpuInvoke.Multiply( col1, new MCvScalar( uniquenessThreshold ), col1, stream );
GpuInvoke.Compare( col0, col1, gpuMask, CMP_TYPE.CV_CMP_LE, stream );
}
observedKeyPoints = new VectorOfKeyPoint();
surfGpu.DownloadKeypoints( gpuObservedKeyPoints, observedKeyPoints );
//wait for the stream to complete its tasks
//We can perform some other CPU intesive stuffs here while we are waiting for the stream to complete.
stream.WaitForCompletion();
gpuMask.Download( mask );
gpuMatchIndices.Download( indices );
if ( GpuInvoke.CountNonZero( gpuMask ) >= 4 )
{
int nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(modelKeyPoints, observedKeyPoints, indices, mask, 1.5, 20);
if ( nonZeroCount >= 4 )
{
Features2DToolbox.GetHomographyMatrixFromMatchedFeatures( modelKeyPoints, observedKeyPoints, indices, mask, 2 );
}
if ( (double)nonZeroCount / mask.Height > 0.02 )
{
return true;
}
}
}
}
}
else
{
//extract features from the object image
modelKeyPoints = surfCpu.DetectKeyPointsRaw( modelImage, null );
Matrix<float> modelDescriptors = surfCpu.ComputeDescriptorsRaw(modelImage, null, modelKeyPoints);
// extract features from the observed image
observedKeyPoints = surfCpu.DetectKeyPointsRaw( observedImage, null );
Matrix<float> observedDescriptors = surfCpu.ComputeDescriptorsRaw(observedImage, null, observedKeyPoints);
BruteForceMatcher<float> matcher = new BruteForceMatcher<float>(DistanceType.L2);
matcher.Add( modelDescriptors );
indices = new Matrix<int>( observedDescriptors.Rows, k );
using ( Matrix<float> dist = new Matrix<float>( observedDescriptors.Rows, k ) )
{
matcher.KnnMatch( observedDescriptors, indices, dist, k, null );
mask = new Matrix<byte>( dist.Rows, 1 );
mask.SetValue( 255 );
Features2DToolbox.VoteForUniqueness( dist, uniquenessThreshold, mask );
}
int nonZeroCount = CvInvoke.cvCountNonZero(mask);
if ( nonZeroCount >= 4 )
{
nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation( modelKeyPoints, observedKeyPoints, indices, mask, 1.5, 20 );
if ( nonZeroCount >= 4 )
{
Features2DToolbox.GetHomographyMatrixFromMatchedFeatures( modelKeyPoints, observedKeyPoints, indices, mask, 2 );
}
}
if ( (double)nonZeroCount/mask.Height > 0.02 )
//.........这里部分代码省略.........
示例6: TestCudaPyrLKOpticalFlow
public void TestCudaPyrLKOpticalFlow()
{
if (!CudaInvoke.HasCuda)
return;
Image<Gray, Byte> prevImg, currImg;
AutoTestVarious.OpticalFlowImage(out prevImg, out currImg);
Mat flow = new Mat();
CudaDensePyrLKOpticalFlow opticalflow = new CudaDensePyrLKOpticalFlow(new Size(21, 21), 3, 30, false);
using (CudaImage<Gray, Byte> prevGpu = new CudaImage<Gray, byte>(prevImg))
using (CudaImage<Gray, byte> currGpu = new CudaImage<Gray, byte>(currImg))
using (GpuMat flowGpu = new GpuMat())
{
opticalflow.Calc(prevGpu, currGpu, flowGpu);
flowGpu.Download(flow);
}
}
示例7: TestSplitMerge
public void TestSplitMerge()
{
if (CudaInvoke.HasCuda)
{
using (Image<Bgr, Byte> img1 = new Image<Bgr, byte>(1200, 640))
{
img1.SetRandUniform(new MCvScalar(0, 0, 0), new MCvScalar(255, 255, 255));
using (GpuMat gpuImg1 = new GpuMat(img1))
{
GpuMat[] channels = gpuImg1.Split(null);
for (int i = 0; i < channels.Length; i++)
{
Mat imgL = channels[i].ToMat();
Image<Gray, Byte> imgR = img1[i];
Assert.IsTrue(imgL.Equals(imgR.Mat), "failed split GpuMat");
}
using (GpuMat gpuImg2 = new GpuMat())
{
gpuImg2.MergeFrom(channels, null);
using (Image<Bgr, byte> img2 = new Image<Bgr, byte>(img1.Size))
{
gpuImg2.Download(img2);
Assert.IsTrue(img2.Equals(img1), "failed split and merge test");
}
}
for (int i = 0; i < channels.Length; i++)
{
channels[i].Dispose();
}
}
}
}
}
示例8: TestCudaBroxOpticalFlow
public void TestCudaBroxOpticalFlow()
{
if (!CudaInvoke.HasCuda)
return;
Image<Gray, Byte> prevImg, currImg;
AutoTestVarious.OpticalFlowImage(out prevImg, out currImg);
Mat flow = new Mat();
CudaBroxOpticalFlow opticalflow = new CudaBroxOpticalFlow();
using (CudaImage<Gray, float> prevGpu = new CudaImage<Gray, float>(prevImg.Convert<Gray, float>()))
using (CudaImage<Gray, float> currGpu = new CudaImage<Gray, float>(currImg.Convert<Gray, float>()))
using (GpuMat flowGpu = new GpuMat())
{
opticalflow.Calc(prevGpu, currGpu, flowGpu);
flowGpu.Download(flow);
}
}
示例9: TestCudaUploadDownload
public void TestCudaUploadDownload()
{
if (!CudaInvoke.HasCuda)
return;
Mat m = new Mat(new Size(480, 320), DepthType.Cv8U, 3);
CvInvoke.Randu(m, new MCvScalar(), new MCvScalar(255, 255, 255) );
#region test for async download & upload
Stream stream = new Stream();
GpuMat gm1 = new GpuMat();
gm1.Upload(m, stream);
Mat m2 = new Mat();
gm1.Download(m2, stream);
stream.WaitForCompletion();
EmguAssert.IsTrue(m.Equals(m2));
#endregion
#region test for blocking download & upload
GpuMat gm2 = new GpuMat();
gm2.Upload(m);
Mat m3 = new Mat();
gm2.Download(m3);
EmguAssert.IsTrue(m.Equals(m3));
#endregion
}