当前位置: 首页>>代码示例>>C#>>正文


C# Discrete.GetWorkspace方法代码示例

本文整理汇总了C#中Discrete.GetWorkspace方法的典型用法代码示例。如果您正苦于以下问题:C# Discrete.GetWorkspace方法的具体用法?C# Discrete.GetWorkspace怎么用?C# Discrete.GetWorkspace使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Discrete的用法示例。


在下文中一共展示了Discrete.GetWorkspace方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: SampleAverageConditional

		/// <summary>
		/// EP message to 'sample'.
		/// </summary>
		/// <param name="selector">Incoming message from 'selector'.</param>
		/// <param name="probs">Constant value for 'probs'.</param>
		/// <param name="result">Modified to contain the outgoing message.</param>
		/// <returns><paramref name="result"/></returns>
		/// <remarks><para>
		/// The outgoing message is the integral of the factor times incoming messages, over all arguments except 'sample'.
		/// The formula is <c>int f(sample,x) q(x) dx</c> where <c>x = (selector,probs)</c>.
		/// </para></remarks>
		public static Discrete SampleAverageConditional(Discrete selector, Matrix probs, Discrete result)
		{
			Vector v = result.GetWorkspace();
			v.SetToProduct(selector.GetProbs(), probs);
			result.SetProbs(v);
			return result;
		}
开发者ID:xornand,项目名称:Infer.Net,代码行数:18,代码来源:DiscreteFromDiscrete.cs

示例2: SelectorAverageConditional

		/// <summary>
		/// EP message to 'selector'.
		/// </summary>
		/// <param name="sample">Incoming message from 'sample'.</param>
		/// <param name="probs">Constant value for 'probs'.</param>
		/// <param name="result">Modified to contain the outgoing message.</param>
		/// <returns><paramref name="result"/></returns>
		/// <remarks><para>
		/// The outgoing message is the integral of the factor times incoming messages, over all arguments except 'selector'.
		/// The formula is <c>int f(selector,x) q(x) dx</c> where <c>x = (sample,probs)</c>.
		/// </para></remarks>
		public static Discrete SelectorAverageConditional(Discrete sample, Matrix probs, Discrete result)
		{
			Vector v = result.GetWorkspace();
			v.SetToProduct(probs, sample.GetProbs());
			result.SetProbs(v);
			return result;
		}
开发者ID:xornand,项目名称:Infer.Net,代码行数:18,代码来源:DiscreteFromDiscrete.cs

示例3: IndexAverageConditional

		/// <summary>
		/// EP message to 'index'.
		/// </summary>
		/// <param name="sample">Incoming message from 'sample'. Must be a proper distribution.  If uniform, the result will be uniform.</param>
		/// <param name="ProbTrue">Constant value for 'probTrue'.</param>
		/// <param name="result">Modified to contain the outgoing message.</param>
		/// <returns><paramref name="result"/></returns>
		/// <remarks><para>
		/// The outgoing message is the integral of the factor times incoming messages, over all arguments except 'index'.
		/// The formula is <c>int f(index,x) q(x) dx</c> where <c>x = (sample,probTrue)</c>.
		/// </para></remarks>
		/// <exception cref="ImproperMessageException"><paramref name="sample"/> is not a proper distribution</exception>
		public static Discrete IndexAverageConditional([SkipIfUniform] Bernoulli sample, double[] ProbTrue, Discrete result)
		{
			if (result == default(Discrete)) result = Discrete.Uniform(ProbTrue.Length);
			// p(Y) = ProbTrue[Y]*p(X=true) + (1-ProbTrue[Y])*p(X=false)
			Vector probs = result.GetWorkspace();
			double p = sample.GetProbTrue();
			probs.SetTo(ProbTrue);
			probs.SetToProduct(probs, 2.0 * p - 1.0);
			probs.SetToSum(probs, 1.0 - p);
			result.SetProbs(probs);
			return result;
		}
开发者ID:xornand,项目名称:Infer.Net,代码行数:24,代码来源:BernoulliFromDiscrete.cs

示例4: AAverageLogarithm

		/// <summary>
		/// VMP message to 'a'
		/// </summary>
		/// <param name="isGreaterThan">Incoming message from 'isGreaterThan'. Must be a proper distribution.  If uniform, the result will be uniform.</param>
		/// <param name="b">Incoming message from 'b'.</param>
		/// <param name="result">Modified to contain the outgoing message</param>
		/// <returns><paramref name="result"/></returns>
		/// <remarks><para>
		/// The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except 'a'.
		/// Because the factor is deterministic, 'isGreaterThan' is integrated out before taking the logarithm.
		/// The formula is <c>exp(sum_(b) p(b) log(sum_isGreaterThan p(isGreaterThan) factor(isGreaterThan,a,b)))</c>.
		/// </para></remarks>
		/// <exception cref="ImproperMessageException"><paramref name="isGreaterThan"/> is not a proper distribution</exception>
		public static Discrete AAverageLogarithm([SkipIfUniform] Bernoulli isGreaterThan, Discrete b, Discrete result)
		{
			if (b.IsPointMass) return AAverageLogarithm(isGreaterThan, b.Point, result);
			if (isGreaterThan.IsPointMass) return AAverageLogarithm(isGreaterThan.Point, b, result);
			// f(a,b) = p(c=1) I(a > b) + p(c=0) I(a <= b)
			// message to a = exp(sum_b q(b) log f(a,b))
			Vector aProbs = result.GetWorkspace();
			double logProbTrue = isGreaterThan.GetLogProbTrue();
			double logProbFalse = isGreaterThan.GetLogProbFalse();
			for (int i = 0; i < aProbs.Count; i++) {
				double sum = 0.0;
				int j = 0;
				for (; (j < i) && (j < b.Dimension); j++) {
					sum += logProbTrue*b[j];
				}
				for (; j < b.Dimension; j++) {
					sum += logProbFalse*b[j];
				}
				aProbs[i] = Math.Exp(sum);
			}
			result.SetProbs(aProbs);
			return result;
		}
开发者ID:xornand,项目名称:Infer.Net,代码行数:36,代码来源:IsGreaterThan.cs

示例5: BAverageConditional

		/// <summary>
		/// EP message to 'b'
		/// </summary>
		/// <param name="isGreaterThan">Incoming message from 'isGreaterThan'. Must be a proper distribution.  If uniform, the result will be uniform.</param>
		/// <param name="a">Incoming message from 'a'.</param>
		/// <param name="result">Modified to contain the outgoing message</param>
		/// <returns><paramref name="result"/></returns>
		/// <remarks><para>
		/// The outgoing message is a distribution matching the moments of 'b' as the random arguments are varied.
		/// The formula is <c>proj[p(b) sum_(isGreaterThan,a) p(isGreaterThan,a) factor(isGreaterThan,a,b)]/p(b)</c>.
		/// </para></remarks>
		/// <exception cref="ImproperMessageException"><paramref name="isGreaterThan"/> is not a proper distribution</exception>
		static public Discrete BAverageConditional([SkipIfUniform] Bernoulli isGreaterThan, Discrete a, Discrete result)
		{
			if (a.IsPointMass) return BAverageConditional(isGreaterThan, a.Point, result);
			Vector bProbs = result.GetWorkspace();
			double probTrue = isGreaterThan.GetProbTrue();
			double probFalse = 1 - probTrue;
			for (int j = 0; j < bProbs.Count; j++) {
				double sum0 = 0.0;
				int i = 0;
				for (; (i <= j) && (i < a.Dimension); i++) {
					sum0 += a[i];
				}
				double sum1 = 0.0;
				for (; i < a.Dimension; i++) {
					sum1 += a[i];
				}
				bProbs[j] = probTrue*sum1 + probFalse*sum0;
			}
			result.SetProbs(bProbs);
			return result;
		}
开发者ID:xornand,项目名称:Infer.Net,代码行数:33,代码来源:IsGreaterThan.cs

示例6: AAverageConditional

		/// <summary>
		/// EP message to 'a'
		/// </summary>
		/// <param name="isGreaterThan">Incoming message from 'isGreaterThan'. Must be a proper distribution.  If uniform, the result will be uniform.</param>
		/// <param name="b">Incoming message from 'b'.</param>
		/// <param name="result">Modified to contain the outgoing message</param>
		/// <returns><paramref name="result"/></returns>
		/// <remarks><para>
		/// The outgoing message is a distribution matching the moments of 'a' as the random arguments are varied.
		/// The formula is <c>proj[p(a) sum_(isGreaterThan,b) p(isGreaterThan,b) factor(isGreaterThan,a,b)]/p(a)</c>.
		/// </para></remarks>
		/// <exception cref="ImproperMessageException"><paramref name="isGreaterThan"/> is not a proper distribution</exception>
		static public Discrete AAverageConditional([SkipIfUniform] Bernoulli isGreaterThan, Discrete b, Discrete result)
		{
			if (b.IsPointMass) return AAverageConditional(isGreaterThan, b.Point, result);
			Vector aProbs = result.GetWorkspace();
			double probTrue = isGreaterThan.GetProbTrue();
			double probFalse = 1 - probTrue;
			for (int i = 0; i < aProbs.Count; i++) {
				double sum1 = 0.0;
				int j = 0;
				for (; (j < i) && (j < b.Dimension); j++) {
					sum1 += b[j];
				}
				double sum0 = 0.0;
				for (; j < b.Dimension; j++) {
					sum0 += b[j];
				}
				aProbs[i] = probTrue*sum1 + probFalse*sum0;
			}
			result.SetProbs(aProbs);
			return result;
		}
开发者ID:xornand,项目名称:Infer.Net,代码行数:33,代码来源:IsGreaterThan.cs

示例7: SizeAverageConditional

		/// <summary>
		/// EP message to 'size'
		/// </summary>
		/// <param name="sample">Constant value for 'sample'.</param>
		/// <param name="result">Modified to contain the outgoing message</param>
		/// <returns><paramref name="result"/></returns>
		/// <remarks><para>
		/// The outgoing message is the factor viewed as a function of 'size' conditioned on the given values.
		/// </para></remarks>
		public static Discrete SizeAverageConditional(int sample, Discrete result)
		{
			Vector probs = result.GetWorkspace();
			for (int size = 0; size <= sample; size++)
			{
				probs[size] = 0.0;
			}
			for (int size = sample+1; size < probs.Count; size++)
			{
				probs[size] = 1.0/size;
			}
			result.SetProbs(probs);
			return result;
		}
开发者ID:xornand,项目名称:Infer.Net,代码行数:23,代码来源:DiscreteUniform.cs

示例8: SampleAverageConditional

		/// <summary>
		/// EP message to 'sample'
		/// </summary>
		/// <param name="size">Constant value for 'size'.</param>
		/// <param name="result">Modified to contain the outgoing message</param>
		/// <returns><paramref name="result"/></returns>
		/// <remarks><para>
		/// The outgoing message is the factor viewed as a function of 'sample' conditioned on the given values.
		/// </para></remarks>
		public static Discrete SampleAverageConditional(int size, Discrete result)
		{
			if (size == 0) return result; //throw new AllZeroException();
			if (result.Dimension < size) throw new ArgumentException("result.Dimension ("+result.Dimension+") < size ("+size+")");
			Vector probs = result.GetWorkspace();
			double invSize = 1.0/size;
			for (int i = 0; i < size; i++)
			{
				probs[i] = invSize;
			}
			for (int i = size; i < probs.Count; i++)
			{
				probs[i] = 0.0;
			}
			result.SetProbs(probs);
			return result;
		}
开发者ID:xornand,项目名称:Infer.Net,代码行数:26,代码来源:DiscreteUniform.cs

示例9: AAverageConditional

		/// <summary>
		/// EP message to 'a'.
		/// </summary>
		/// <param name="areEqual">Constant value for 'areEqual'.</param>
		/// <param name="B">Incoming message from 'b'.</param>
		/// <param name="result">Modified to contain the outgoing message.</param>
		/// <returns><paramref name="result"/></returns>
		/// <remarks><para>
		/// The outgoing message is the integral of the factor times incoming messages, over all arguments except 'a'.
		/// The formula is <c>int f(a,x) q(x) dx</c> where <c>x = (areEqual,b)</c>.
		/// </para></remarks>
		public static Discrete AAverageConditional(bool areEqual, Discrete B, Discrete result)
		{
			if (B.IsPointMass) return AAverageConditional(areEqual, B.Point, result);
			if (result == default(Discrete)) result = Distributions.Discrete.Uniform(B.Dimension, B.Sparsity);
			if (areEqual) result.SetTo(B);
			else {
				Vector probs = result.GetWorkspace();
				probs = B.GetProbs(probs);
				probs.SetToDifference(1.0, probs);
				result.SetProbs(probs);
			}
			return result;
		}
开发者ID:xornand,项目名称:Infer.Net,代码行数:24,代码来源:AreEqual.cs

示例10: SampleAverageConditional

		/// <summary>
		/// EP message to 'sample'
		/// </summary>
		/// <param name="p">Incoming message from 'p'.</param>
		/// <param name="trialCount">Constant value for 'trialCount'.</param>
		/// <param name="result">Modified to contain the outgoing message</param>
		/// <returns><paramref name="result"/></returns>
		/// <remarks><para>
		/// The outgoing message is a distribution matching the moments of 'sample' as the random arguments are varied.
		/// The formula is <c>proj[p(sample) sum_(p) p(p) factor(sample,trialCount,p)]/p(sample)</c>.
		/// </para></remarks>
		public static Discrete SampleAverageConditional(Beta p, int trialCount, Discrete result)
		{
			if (p.IsPointMass) return SampleAverageConditional(p.Point, trialCount, result);
			// result must range from 0 to n
			if (result.Dimension < trialCount+1) throw new ArgumentException("result.Dimension ("+result.Dimension+") < n+1 ("+trialCount+"+1)");
			Vector probs = result.GetWorkspace();
			double a = p.TrueCount;
			double b = p.FalseCount;
			probs.SetAllElementsTo(0.0);
			double max = double.NegativeInfinity;
			for (int k = 0; k <= trialCount; k++) {
				double logProb = MMath.GammaLn(a+k)-MMath.GammaLn(1+k) + MMath.GammaLn(b+trialCount-k)-MMath.GammaLn(1+trialCount-k);
				probs[k] = logProb;
				if (logProb > max) max = logProb;
			}
			for (int k = 0; k <= trialCount; k++) {
				probs[k] = Math.Exp(probs[k] - max);
			}
			result.SetProbs(probs);
			return result;
		}
开发者ID:dtrckd,项目名称:Mixed-Membership-Stochastic-Blockmodel,代码行数:32,代码来源:BinomialOp.cs

示例11: SampleAverageLogarithm

		/// <summary>
		/// VMP message to 'sample'
		/// </summary>
		/// <param name="probs">Incoming message from 'probs'. Must be a proper distribution.  If any element is uniform, the result will be uniform.</param>
		/// <param name="result">Modified to contain the outgoing message</param>
		/// <returns><paramref name="result"/></returns>
		/// <remarks><para>
		/// The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except 'sample'.
		/// The formula is <c>exp(sum_(probs) p(probs) log(factor(sample,probs)))</c>.
		/// </para></remarks>
		/// <exception cref="ImproperMessageException"><paramref name="probs"/> is not a proper distribution</exception>
		public static Discrete SampleAverageLogarithm([SkipIfUniform] Dirichlet probs, Discrete result)
		{
			// E[sum_k I(X=k) log(P[k])] = sum_k I(X=k) E[log(P[k])]
			Vector p = probs.GetMeanLog(result.GetWorkspace());
			double max = p.Max();
			p.SetToFunction(p, x => Math.Exp(x - max));
			result.SetProbs(p);
			return result;
		}
开发者ID:xornand,项目名称:Infer.Net,代码行数:20,代码来源:DiscreteFromDirichlet.cs

示例12: SampleAverageConditional

		/// <summary>
		/// EP message to 'sample'
		/// </summary>
		/// <param name="probs">Incoming message from 'probs'. Must be a proper distribution.  If any element is uniform, the result will be uniform.</param>
		/// <param name="result">Modified to contain the outgoing message</param>
		/// <returns><paramref name="result"/></returns>
		/// <remarks><para>
		/// The outgoing message is a distribution matching the moments of 'sample' as the random arguments are varied.
		/// The formula is <c>proj[p(sample) sum_(probs) p(probs) factor(sample,probs)]/p(sample)</c>.
		/// </para></remarks>
		/// <exception cref="ImproperMessageException"><paramref name="probs"/> is not a proper distribution</exception>
		public static Discrete SampleAverageConditional([SkipIfUniform] Dirichlet probs, Discrete result)
		{
			result.SetProbs(probs.GetMean(result.GetWorkspace()));
			return result;
		}
开发者ID:xornand,项目名称:Infer.Net,代码行数:16,代码来源:DiscreteFromDirichlet.cs

示例13: IndexAverageLogarithm

		/// <summary>
		/// VMP message to 'index'.
		/// </summary>
		/// <param name="sample">Incoming message from 'sample'.</param>
		/// <param name="ProbTrue">Constant value for 'probTrue'.</param>
		/// <param name="result">Modified to contain the outgoing message.</param>
		/// <returns><paramref name="result"/></returns>
		/// <remarks><para>
		/// The outgoing message is the exponential of the integral of the log-factor times incoming messages, over all arguments except 'index'.
		/// The formula is <c>int log(f(index,x)) q(x) dx</c> where <c>x = (sample,probTrue)</c>.
		/// </para></remarks>
		public static Discrete IndexAverageLogarithm(Bernoulli sample, double[] ProbTrue, Discrete result)
		{
			if (result == default(Discrete)) result = Discrete.Uniform(ProbTrue.Length);
			// E[sum_k I(Y=k) (X*log(ProbTrue[k]) + (1-X)*log(1-ProbTrue[k]))]
			// = sum_k I(Y=k) (p(X=true)*log(ProbTrue[k]) + p(X=false)*log(1-ProbTrue[k]))
			// p(Y=k) =propto ProbTrue[k]^p(X=true) (1-ProbTrue[k])^p(X=false)
			Vector probs = result.GetWorkspace();
			double p = sample.GetProbTrue();
			probs.SetTo(ProbTrue);
			probs.SetToFunction(probs, x => Math.Pow(x, p) * Math.Pow(1.0 - x, 1.0 - p));
			result.SetProbs(probs);
			return result;
		}
开发者ID:xornand,项目名称:Infer.Net,代码行数:24,代码来源:BernoulliFromDiscrete.cs

示例14: TrialCountAverageConditional

		/// <summary>
		/// EP message to 'trialCount'
		/// </summary>
		/// <param name="sample">Incoming message from 'sample'.</param>
		/// <param name="p">Constant value for 'p'.</param>
		/// <param name="result">Modified to contain the outgoing message</param>
		/// <returns><paramref name="result"/></returns>
		/// <remarks><para>
		/// The outgoing message is a distribution matching the moments of 'trialCount' as the random arguments are varied.
		/// The formula is <c>proj[p(trialCount) sum_(sample) p(sample) factor(sample,trialCount,p)]/p(trialCount)</c>.
		/// </para></remarks>
		public static Discrete TrialCountAverageConditional(Discrete sample, double p, Discrete result)
		{
			if (sample.IsPointMass) return TrialCountAverageConditional(sample.Point, p, result);
			// n must range from 0 to sampleMax
			if (result.Dimension < sample.Dimension) throw new ArgumentException("result.Dimension ("+result.Dimension+") < sample.Dimension ("+sample.Dimension+")");
			Vector probs = result.GetWorkspace();
			double logp = Math.Log(p);
			double log1minusp = Math.Log(1-p);
			// p(n) = sum_(k<=n) p(k) nchoosek(n,k) p^k (1-p)^(n-k)
			for (int n = 0; n < result.Dimension; n++)
			{
				double s = 0.0;
				for (int k = 0; k <= n; k++)
				{
					s += sample[k] * Math.Exp(MMath.ChooseLn(n, k) + k*(logp - log1minusp));
				}
				probs[n] = Math.Exp(n*log1minusp)*s;
			}
			result.SetProbs(probs);
			return result;
		}
开发者ID:dtrckd,项目名称:Mixed-Membership-Stochastic-Blockmodel,代码行数:32,代码来源:BinomialOp.cs

示例15: AAverageLogarithm

		/// <summary>
		/// VMP message to 'a'.
		/// </summary>
		/// <param name="areEqual">Incoming message from 'areEqual'. Must be a proper distribution.  If uniform, the result will be uniform.</param>
		/// <param name="B">Incoming message from 'b'.</param>
		/// <param name="result">Modified to contain the outgoing message.</param>
		/// <returns><paramref name="result"/></returns>
		/// <remarks><para>
		/// The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except 'a'.
		/// Because the factor is deterministic, 'areEqual' is integrated out before taking the logarithm.
		/// The formula is <c>exp(sum_(b) p(b) log(sum_areEqual p(areEqual) factor(areEqual,a,b)))</c>.
		/// </para></remarks>
		/// <exception cref="ImproperMessageException"><paramref name="areEqual"/> is not a proper distribution</exception>
		public static Discrete AAverageLogarithm([SkipIfUniform] Bernoulli areEqual, Discrete B, Discrete result)
		{
			if (areEqual.IsPointMass) return AAverageLogarithm(areEqual.Point, B, result);
			if (result == default(Discrete)) result = Discrete.Uniform(B.Dimension, B.Sparsity);
			// when AreEqual is marginalized, the factor is proportional to exp((A==B)*areEqual.LogOdds)
			Vector probs = result.GetWorkspace();
			probs = B.GetProbs(probs);
			probs.SetToFunction(probs, x => Math.Exp(x * areEqual.LogOdds));
			result.SetProbs(probs);
			return result;
		}
开发者ID:xornand,项目名称:Infer.Net,代码行数:24,代码来源:AreEqual.cs


注:本文中的Discrete.GetWorkspace方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。