本文整理汇总了C#中Discrete.GetProbs方法的典型用法代码示例。如果您正苦于以下问题:C# Discrete.GetProbs方法的具体用法?C# Discrete.GetProbs怎么用?C# Discrete.GetProbs使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Discrete
的用法示例。
在下文中一共展示了Discrete.GetProbs方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: SelectorAverageConditional
/// <summary>
/// EP message to 'selector'.
/// </summary>
/// <param name="sample">Incoming message from 'sample'.</param>
/// <param name="probs">Constant value for 'probs'.</param>
/// <param name="result">Modified to contain the outgoing message.</param>
/// <returns><paramref name="result"/></returns>
/// <remarks><para>
/// The outgoing message is the integral of the factor times incoming messages, over all arguments except 'selector'.
/// The formula is <c>int f(selector,x) q(x) dx</c> where <c>x = (sample,probs)</c>.
/// </para></remarks>
public static Discrete SelectorAverageConditional(Discrete sample, Matrix probs, Discrete result)
{
Vector v = result.GetWorkspace();
v.SetToProduct(probs, sample.GetProbs());
result.SetProbs(v);
return result;
}
示例2: SampleAverageConditional
/// <summary>
/// EP message to 'sample'.
/// </summary>
/// <param name="selector">Incoming message from 'selector'.</param>
/// <param name="probs">Constant value for 'probs'.</param>
/// <param name="result">Modified to contain the outgoing message.</param>
/// <returns><paramref name="result"/></returns>
/// <remarks><para>
/// The outgoing message is the integral of the factor times incoming messages, over all arguments except 'sample'.
/// The formula is <c>int f(sample,x) q(x) dx</c> where <c>x = (selector,probs)</c>.
/// </para></remarks>
public static Discrete SampleAverageConditional(Discrete selector, Matrix probs, Discrete result)
{
Vector v = result.GetWorkspace();
v.SetToProduct(selector.GetProbs(), probs);
result.SetProbs(v);
return result;
}
示例3: AAverageConditional
/// <summary>
/// EP message to 'a'.
/// </summary>
/// <param name="areEqual">Constant value for 'areEqual'.</param>
/// <param name="B">Incoming message from 'b'.</param>
/// <param name="result">Modified to contain the outgoing message.</param>
/// <returns><paramref name="result"/></returns>
/// <remarks><para>
/// The outgoing message is the integral of the factor times incoming messages, over all arguments except 'a'.
/// The formula is <c>int f(a,x) q(x) dx</c> where <c>x = (areEqual,b)</c>.
/// </para></remarks>
public static Discrete AAverageConditional(bool areEqual, Discrete B, Discrete result)
{
if (B.IsPointMass) return AAverageConditional(areEqual, B.Point, result);
if (result == default(Discrete)) result = Distributions.Discrete.Uniform(B.Dimension, B.Sparsity);
if (areEqual) result.SetTo(B);
else {
Vector probs = result.GetWorkspace();
probs = B.GetProbs(probs);
probs.SetToDifference(1.0, probs);
result.SetProbs(probs);
}
return result;
}
示例4: AAverageLogarithm
/// <summary>
/// VMP message to 'a'.
/// </summary>
/// <param name="areEqual">Incoming message from 'areEqual'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <param name="B">Incoming message from 'b'.</param>
/// <param name="result">Modified to contain the outgoing message.</param>
/// <returns><paramref name="result"/></returns>
/// <remarks><para>
/// The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except 'a'.
/// Because the factor is deterministic, 'areEqual' is integrated out before taking the logarithm.
/// The formula is <c>exp(sum_(b) p(b) log(sum_areEqual p(areEqual) factor(areEqual,a,b)))</c>.
/// </para></remarks>
/// <exception cref="ImproperMessageException"><paramref name="areEqual"/> is not a proper distribution</exception>
public static Discrete AAverageLogarithm([SkipIfUniform] Bernoulli areEqual, Discrete B, Discrete result)
{
if (areEqual.IsPointMass) return AAverageLogarithm(areEqual.Point, B, result);
if (result == default(Discrete)) result = Discrete.Uniform(B.Dimension, B.Sparsity);
// when AreEqual is marginalized, the factor is proportional to exp((A==B)*areEqual.LogOdds)
Vector probs = result.GetWorkspace();
probs = B.GetProbs(probs);
probs.SetToFunction(probs, x => Math.Exp(x * areEqual.LogOdds));
result.SetProbs(probs);
return result;
}
示例5: LogAverageFactor
/// <summary>
/// Evidence message for EP.
/// </summary>
/// <param name="sample">Incoming message from 'sample'.</param>
/// <param name="selector">Incoming message from 'selector'.</param>
/// <param name="probs">Constant value for 'probs'.</param>
/// <returns><c>log(int f(x) qnotf(x) dx)</c></returns>
/// <remarks><para>
/// The formula for the result is <c>log(int f(x) qnotf(x) dx)</c>
/// where <c>x = (sample,selector,probs)</c>.
/// </para></remarks>
public static double LogAverageFactor(Discrete sample, Discrete selector, Matrix probs)
{
return Math.Log(probs.QuadraticForm(selector.GetProbs(), sample.GetProbs()));
}
示例6: AverageLogFactor
/// <summary>
/// Evidence message for VMP
/// </summary>
/// <param name="sample">Incoming message from 'sample'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <param name="probs">Incoming message from 'probs'. Must be a proper distribution. If any element is uniform, the result will be uniform.</param>
/// <returns>Average of the factor's log-value across the given argument distributions</returns>
/// <remarks><para>
/// The formula for the result is <c>sum_(sample,probs) p(sample,probs) log(factor(sample,probs))</c>.
/// Adding up these values across all factors and variables gives the log-evidence estimate for VMP.
/// </para></remarks>
/// <exception cref="ImproperMessageException"><paramref name="sample"/> is not a proper distribution</exception>
/// <exception cref="ImproperMessageException"><paramref name="probs"/> is not a proper distribution</exception>
public static double AverageLogFactor(Discrete sample, [Proper] Dirichlet probs)
{
if (sample.IsPointMass)
return AverageLogFactor(sample.Point, probs);
if (sample.Dimension != probs.Dimension) throw new ArgumentException("sample.Dimension (" + sample.Dimension + ") != probs.Dimension (" + probs.Dimension + ")");
Vector sampleProbs = sample.GetProbs();
Vector pSuffStats = probs.GetMeanLog();
// avoid multiplication of 0*log(0)
foreach(int i in sampleProbs.IndexOfAll(v => v == 0.0)) pSuffStats[i] = 0.0;
double total = Vector.InnerProduct(sampleProbs, pSuffStats);
return total;
}
示例7: ProbsAverageLogarithm
/// <summary>
/// VMP message to 'probs'
/// </summary>
/// <param name="sample">Incoming message from 'sample'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <param name="result">Modified to contain the outgoing message</param>
/// <returns><paramref name="result"/></returns>
/// <remarks><para>
/// The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except 'probs'.
/// The formula is <c>exp(sum_(sample) p(sample) log(factor(sample,probs)))</c>.
/// </para></remarks>
/// <exception cref="ImproperMessageException"><paramref name="sample"/> is not a proper distribution</exception>
public static Dirichlet ProbsAverageLogarithm(Discrete sample, Dirichlet result)
{
// E[sum_k I(X=k) log(P[k])] = sum_k p(X=k) log(P[k])
result.TotalCount = result.Dimension + 1;
result.PseudoCount.SetAllElementsTo(1);
result.PseudoCount.SetToSum(result.PseudoCount, sample.GetProbs());
return result;
}