本文整理汇总了C++中pointcloudt::Ptr::size方法的典型用法代码示例。如果您正苦于以下问题:C++ Ptr::size方法的具体用法?C++ Ptr::size怎么用?C++ Ptr::size使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pointcloudt::Ptr
的用法示例。
在下文中一共展示了Ptr::size方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: callback
void callback(const sensor_msgs::PointCloud2::ConstPtr& pc)
{
PointCloudT::Ptr cloud = boost::make_shared<PointCloudT>();
pcl::fromROSMsg(*pc, *cloud);
size_t height = 8; // 8 layers
size_t width = round((start_angle_ - end_angle_) / angular_resolution_) + 1;
PointT invalid;
invalid.x = invalid.y = invalid.z = std::numeric_limits<float>::quiet_NaN();
PointCloudT::Ptr cloud_out = boost::make_shared<PointCloudT>(width, height, invalid);
cloud_out->is_dense = false;
for (size_t i = 0; i < cloud->size(); i++)
{
const PointT &p = cloud->points[i];
int col = round((atan2(p.y, p.x) - end_angle_) / angular_resolution_);
int row = p.layer;
if (col < 0 || col >= width || row < 0 || row >= height)
{
ROS_ERROR("Invalid coordinates: (%d, %d) is outside (0, 0)..(%zu, %zu)!", col, row, width, height);
continue;
}
(*cloud_out)[row * width + col] = p;
}
sensor_msgs::PointCloud2::Ptr msg = boost::make_shared<sensor_msgs::PointCloud2>();
pcl::toROSMsg(*cloud_out, *msg);
msg->header = pc->header;
pub.publish(msg);
}
示例2: move_to_frame
void move_to_frame(const PointCloudT::Ptr &input, const string &target_frame, PointCloudT::Ptr &output) {
ROS_INFO("Transforming Input Point Cloud to %s frame...", target_frame.c_str());
ROS_INFO(" Input Cloud Size: %zu", input->size());
if (input->header.frame_id == target_frame) {
output = input;
return;
}
while (ros::ok()) {
tf::StampedTransform stamped_transform;
try {
// Look up transform
tf_listener->lookupTransform(target_frame, input->header.frame_id, ros::Time(0), stamped_transform);
// Apply transform
pcl_ros::transformPointCloud(*input, *output, stamped_transform);
// Store Header Details
output->header.frame_id = target_frame;
pcl_conversions::toPCL(ros::Time::now(), output->header.stamp);
break;
}
//keep trying until we get the transform
catch (tf::TransformException &ex) {
ROS_ERROR_THROTTLE(1, "%s", ex.what());
ROS_WARN_THROTTLE(1, " Waiting for transform from cloud frame (%s) to %s frame. Trying again",
input->header.frame_id.c_str(), target_frame.c_str());
continue;
}
}
}
示例3: calculate_density
double calculate_density(const PointCloudT::Ptr &cloud, const bwi_perception::BoundingBox &box) {
// TODO: Calculate true volume
// If the cloud is one point thick in some dimension, we'll assign that dimension a magnitude of 1cm
double x_dim = max(abs(box.max[0] - box.min[0]), 0.01f);
double y_dim = max(abs(box.max[1] - box.min[1]), 0.01f);
double z_dim = max(abs(box.max[2] - box.min[2]), 0.01f);
double volume = x_dim * y_dim * z_dim;
return (double) cloud->size() / volume;
}
示例4: ShowPC
void PlayWindow::ShowPC(PointCloudT::Ptr PC)
{
updateModelMutex.lock();
if (ui->checkBox_ShowPC->isChecked())
{
if (!viewer->updatePointCloud(PC))
viewer->addPointCloud(PC);
Eigen::Matrix4f currentPose = Eigen::Matrix4f::Identity();
currentPose.block(0,0,3,3) = PC->sensor_orientation_.matrix();
currentPose.block(0,3,3,1) = PC->sensor_origin_.head(3);
viewer->updatePointCloudPose("cloud",Eigen::Affine3f(currentPose) );
}
ui->qvtkWidget->update ();
updateModelMutex.unlock();
// Timing
times.push_back(QDateTime::currentDateTime().toMSecsSinceEpoch() - PC->header.stamp);
double mean;
if (times.size() > 60)
{
mean = std::accumulate(times.begin(), times.end(), 0.0) / times.size();
times.erase(times.begin());
}
if (ui->checkBox_SavePC->isChecked())
pcl::io::savePCDFileASCII(PC->header.frame_id, *PC);
std::vector<int> ind;
pcl::removeNaNFromPointCloud(*PC, *PC, ind);
ui->label_nPoint->setText(QString("Nb Point : %1").arg(PC->size()));
ui->label_time->setText(QString("Time (ms) : %1").arg(mean));
ui->label_fps->setText(QString("FPS (Hz) : %1").arg(1000/mean));
return;
}
示例5: object
// Align a rigid object to a scene with clutter and occlusions
int
main (int argc, char **argv)
{
// Point clouds
PointCloudT::Ptr object (new PointCloudT);
PointCloudT::Ptr object_aligned (new PointCloudT);
PointCloudT::Ptr scene (new PointCloudT);
FeatureCloudT::Ptr object_features (new FeatureCloudT);
FeatureCloudT::Ptr scene_features (new FeatureCloudT);
// Get input object and scene
if (argc != 3)
{
pcl::console::print_error ("Syntax is: %s object.pcd scene.pcd\n", argv[0]);
return (1);
}
// Load object and scene
pcl::console::print_highlight ("Loading point clouds...\n");
if (pcl::io::loadPCDFile<PointNT> (argv[1], *object) < 0 ||
pcl::io::loadPCDFile<PointNT> (argv[2], *scene) < 0)
{
pcl::console::print_error ("Error loading object/scene file!\n");
return (1);
}
// Downsample
pcl::console::print_highlight ("Downsampling...\n");
pcl::VoxelGrid<PointNT> grid;
const float leaf = 0.005f;
grid.setLeafSize (leaf, leaf, leaf);
grid.setInputCloud (object);
grid.filter (*object);
grid.setInputCloud (scene);
grid.filter (*scene);
// Estimate normals for scene
pcl::console::print_highlight ("Estimating scene normals...\n");
pcl::NormalEstimationOMP<PointNT,PointNT> nest;
nest.setRadiusSearch (0.01);
nest.setInputCloud (scene);
nest.compute (*scene);
// Estimate features
pcl::console::print_highlight ("Estimating features...\n");
FeatureEstimationT fest;
fest.setRadiusSearch (0.025);
fest.setInputCloud (object);
fest.setInputNormals (object);
fest.compute (*object_features);
fest.setInputCloud (scene);
fest.setInputNormals (scene);
fest.compute (*scene_features);
// Perform alignment
pcl::console::print_highlight ("Starting alignment...\n");
pcl::SampleConsensusPrerejective<PointNT,PointNT,FeatureT> align;
align.setInputSource (object);
align.setSourceFeatures (object_features);
align.setInputTarget (scene);
align.setTargetFeatures (scene_features);
align.setMaximumIterations (100000); // Number of RANSAC iterations
align.setNumberOfSamples (3); // Number of points to sample for generating/prerejecting a pose
align.setCorrespondenceRandomness (5); // Number of nearest features to use
align.setSimilarityThreshold (0.9f); // Polygonal edge length similarity threshold
align.setMaxCorrespondenceDistance (2.5f * leaf); // Inlier threshold
align.setInlierFraction (0.25f); // Required inlier fraction for accepting a pose hypothesis
{
pcl::ScopeTime t("Alignment");
align.align (*object_aligned);
}
if (align.hasConverged ())
{
// Print results
printf ("\n");
Eigen::Matrix4f transformation = align.getFinalTransformation ();
pcl::console::print_info (" | %6.3f %6.3f %6.3f | \n", transformation (0,0), transformation (0,1), transformation (0,2));
pcl::console::print_info ("R = | %6.3f %6.3f %6.3f | \n", transformation (1,0), transformation (1,1), transformation (1,2));
pcl::console::print_info (" | %6.3f %6.3f %6.3f | \n", transformation (2,0), transformation (2,1), transformation (2,2));
pcl::console::print_info ("\n");
pcl::console::print_info ("t = < %0.3f, %0.3f, %0.3f >\n", transformation (0,3), transformation (1,3), transformation (2,3));
pcl::console::print_info ("\n");
pcl::console::print_info ("Inliers: %i/%i\n", align.getInliers ().size (), object->size ());
// Show alignment
pcl::visualization::PCLVisualizer visu("Alignment");
visu.addPointCloud (scene, ColorHandlerT (scene, 0.0, 255.0, 0.0), "scene");
visu.addPointCloud (object_aligned, ColorHandlerT (object_aligned, 0.0, 0.0, 255.0), "object_aligned");
visu.spin ();
}
else
{
pcl::console::print_error ("Alignment failed!\n");
return (1);
}
return (0);
}
示例6: main
// Align a rigid object to a scene with clutter and occlusions
int main (int argc, char **argv)
{
// Point clouds
PointCloudT::Ptr object (new PointCloudT);
PointCloudT::Ptr scene (new PointCloudT);
PointCloudT::Ptr object_aligned (new PointCloudT);
// Get input object and scene
if (argc < 3)
{
pcl::console::print_error ("Syntax is: %s object.pcd scene.pcd\n", argv[0]);
return (1);
}
pcl::console::parse_argument (argc, argv, "--max_iterations", in_max_iterations);
pcl::console::parse_argument (argc, argv, "--num_samples", in_num_samples);
pcl::console::parse_argument (argc, argv, "--s_thresh", in_similarity_thresh);
pcl::console::parse_argument (argc, argv, "--max_cdist", in_max_corresp_dist);
pcl::console::parse_argument (argc, argv, "--inlier_frac", in_inlier_frac);
pcl::console::parse_argument (argc, argv, "--leaf", in_leaf);
pcl::console::parse_argument (argc, argv, "--normal_radius", normal_radius);
pcl::console::parse_argument (argc, argv, "--feature_radius", feature_radius);
pcl::console::parse_argument (argc, argv, "--icp", in_icp);
pcl::console::parse_argument (argc, argv, "--max_corr_icp", max_corr_icp);
pcl::console::parse_argument (argc, argv, "--icp_eps", max_eps_icp);
// Load object and scene
pcl::console::print_highlight ("Loading point clouds...\n");
pcl_tools::cloud_from_stl(argv[2], *object);
if (pcl::io::loadPCDFile<PointNT> (argv[1], *scene) < 0)
{
pcl::console::print_error ("Error loading object/scene file!\n");
return (1);
}
std::vector<int> indices;
pcl::removeNaNFromPointCloud(*scene, *scene, indices);
pcl::removeNaNFromPointCloud(*object, *object, indices);
// /*pcl_tools::icp_result align = */alp_align(object, scene, object_aligned, 50000, 3, 0.9f, 5.5f * leaf, 0.7f);
// /*pcl_tools::icp_result align = */alp_align(object_aligned, scene, object_aligned, 50000, 3, 0.9f, 7.5f * leaf, 0.4f);
std::cout << "Inlier frac " << in_inlier_frac << std::endl;
pcl_tools::icp_result align = alp_align(object, scene, object_aligned, in_max_iterations, in_num_samples, in_similarity_thresh, in_max_corresp_dist, in_inlier_frac, in_leaf);
pcl::visualization::PCLVisualizer visu("Alignment");
if (align.converged)
{
pcl::console::print_info ("Inliers: %i/%i, scene: %i\n", align.inliers, object->size (), scene->size ());
// Show alignment
visu.addPointCloud (object, ColorHandlerT (object, 255.0, 0.0, 0.0), "object");
visu.addPointCloud (scene, ColorHandlerT (scene, 0.0, 255.0, 0.0), "scene");
visu.addPointCloud (object_aligned, ColorHandlerT (object_aligned, 0.0, 0.0, 255.0), "object_aligned");
// visu.addPointCloudNormals<PointNT>(object);
visu.spin ();
}
else
{
pcl::console::print_error ("Alignment failed!\n");
return (1);
}
if (in_icp) {
pcl::console::print_highlight ("Applying ICP now\n");
pcl::IterativeClosestPointNonLinear<PointNT, PointNT> icp;
// pcl::IterativeClosestPoint<PointNT, PointNT> icp;
pcl_tools::affine_cloud(Eigen::Vector3f::UnitZ(), 0.0, Eigen::Vector3f(0.0, 0.0, 0.02), *object_aligned, *object_aligned);
icp.setMaximumIterations (100);
icp.setMaxCorrespondenceDistance(max_corr_icp);
icp.setTransformationEpsilon (max_eps_icp);
icp.setInputSource (object_aligned);
icp.setInputTarget (scene);
icp.align (*object_aligned);
if (icp.hasConverged()) {
pcl::console::print_highlight ("ICP: Converged with fitness %f\n", icp.getFitnessScore());
}
// pcl::visualization::PCLVisualizer visu("Alignment");
// visu.addPointCloud (object, ColorHandlerT (object, 255.0, 0.0, 0.0), "object");
// visu.addPointCloud (scene, ColorHandlerT (scene, 0.0, 255.0, 0.0), "scene");
visu.updatePointCloud (object_aligned, ColorHandlerT (object_aligned, 100.0, 50.0, 200.0), "object_aligned");
// visu.addPointCloudNormals<PointNT>(object);
visu.spin ();
}
return (0);
}