本文整理汇总了C++中meshlib::Mesh::getNumberOfElements方法的典型用法代码示例。如果您正苦于以下问题:C++ Mesh::getNumberOfElements方法的具体用法?C++ Mesh::getNumberOfElements怎么用?C++ Mesh::getNumberOfElements使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类meshlib::Mesh
的用法示例。
在下文中一共展示了Mesh::getNumberOfElements方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: createPythonBoundaryCondition
std::unique_ptr<PythonBoundaryCondition> createPythonBoundaryCondition(
BaseLib::ConfigTree const& config, MeshLib::Mesh const& boundary_mesh,
NumLib::LocalToGlobalIndexMap const& dof_table, std::size_t bulk_mesh_id,
int const variable_id, int const component_id,
unsigned const integration_order, unsigned const shapefunction_order,
unsigned const global_dim)
{
//! \ogs_file_param{prj__process_variables__process_variable__boundary_conditions__boundary_condition__type}
config.checkConfigParameter("type", "Python");
//! \ogs_file_param{prj__process_variables__process_variable__boundary_conditions__boundary_condition__Python__bc_object}
auto const bc_object = config.getConfigParameter<std::string>("bc_object");
//! \ogs_file_param{prj__process_variables__process_variable__boundary_conditions__boundary_condition__Python__flush_stdout}
auto const flush_stdout = config.getConfigParameter("flush_stdout", false);
// Evaluate Python code in scope of main module
pybind11::object scope =
pybind11::module::import("__main__").attr("__dict__");
if (!scope.contains(bc_object))
OGS_FATAL(
"Function `%s' is not defined in the python script file, or there "
"was no python script file specified.",
bc_object.c_str());
auto* bc = scope[bc_object.c_str()]
.cast<PythonBoundaryConditionPythonSideInterface*>();
if (variable_id >= static_cast<int>(dof_table.getNumberOfVariables()) ||
component_id >= dof_table.getNumberOfVariableComponents(variable_id))
{
OGS_FATAL(
"Variable id or component id too high. Actual values: (%d, %d), "
"maximum values: (%d, %d).",
variable_id, component_id, dof_table.getNumberOfVariables(),
dof_table.getNumberOfVariableComponents(variable_id));
}
// In case of partitioned mesh the boundary could be empty, i.e. there is no
// boundary condition.
#ifdef USE_PETSC
// This can be extracted to createBoundaryCondition() but then the config
// parameters are not read and will cause an error.
// TODO (naumov): Add a function to ConfigTree for skipping the tags of the
// subtree and move the code up in createBoundaryCondition().
if (boundary_mesh.getDimension() == 0 &&
boundary_mesh.getNumberOfNodes() == 0 &&
boundary_mesh.getNumberOfElements() == 0)
{
return nullptr;
}
#endif // USE_PETSC
return std::make_unique<PythonBoundaryCondition>(
PythonBoundaryConditionData{
bc, dof_table, bulk_mesh_id,
dof_table.getGlobalComponent(variable_id, component_id),
boundary_mesh},
integration_order, shapefunction_order, global_dim, flush_stdout);
}
示例2: convertMeshToGeo
bool convertMeshToGeo(const MeshLib::Mesh &mesh, GeoLib::GEOObjects &geo_objects, double eps)
{
if (mesh.getDimension() != 2)
{
ERR ("Mesh to geometry conversion is only working for 2D meshes.");
return false;
}
// nodes to points conversion
std::string mesh_name(mesh.getName());
{
auto points = std::make_unique<std::vector<GeoLib::Point*>>();
points->reserve(mesh.getNumberOfNodes());
for (auto node_ptr : mesh.getNodes())
points->push_back(new GeoLib::Point(*node_ptr, node_ptr->getID()));
geo_objects.addPointVec(std::move(points), mesh_name, nullptr, eps);
}
const std::vector<std::size_t> id_map (geo_objects.getPointVecObj(mesh_name)->getIDMap());
// elements to surface triangles conversion
std::string const mat_name ("MaterialIDs");
auto bounds (MeshInformation::getValueBounds<int>(mesh, mat_name));
const unsigned nMatGroups(bounds.second-bounds.first+1);
auto sfcs = std::make_unique<std::vector<GeoLib::Surface*>>();
sfcs->reserve(nMatGroups);
auto const& points = *geo_objects.getPointVec(mesh_name);
for (unsigned i=0; i<nMatGroups; ++i)
sfcs->push_back(new GeoLib::Surface(points));
const std::vector<MeshLib::Element*> &elements = mesh.getElements();
const std::size_t nElems (mesh.getNumberOfElements());
MeshLib::PropertyVector<int> const*const materialIds =
mesh.getProperties().existsPropertyVector<int>("MaterialIDs")
? mesh.getProperties().getPropertyVector<int>("MaterialIDs")
: nullptr;
for (unsigned i=0; i<nElems; ++i)
{
auto surfaceId = !materialIds ? 0 : ((*materialIds)[i] - bounds.first);
MeshLib::Element* e (elements[i]);
if (e->getGeomType() == MeshElemType::TRIANGLE)
(*sfcs)[surfaceId]->addTriangle(id_map[e->getNodeIndex(0)], id_map[e->getNodeIndex(1)], id_map[e->getNodeIndex(2)]);
if (e->getGeomType() == MeshElemType::QUAD)
{
(*sfcs)[surfaceId]->addTriangle(id_map[e->getNodeIndex(0)], id_map[e->getNodeIndex(1)], id_map[e->getNodeIndex(2)]);
(*sfcs)[surfaceId]->addTriangle(id_map[e->getNodeIndex(0)], id_map[e->getNodeIndex(2)], id_map[e->getNodeIndex(3)]);
}
// all other element types are ignored (i.e. lines)
}
std::for_each(sfcs->begin(), sfcs->end(), [](GeoLib::Surface* sfc){ if (sfc->getNumberOfTriangles()==0) delete sfc; sfc = nullptr;});
auto sfcs_end = std::remove(sfcs->begin(), sfcs->end(), nullptr);
sfcs->erase(sfcs_end, sfcs->end());
geo_objects.addSurfaceVec(std::move(sfcs), mesh_name);
return true;
}
示例3: createDirichletBoundaryCondition
std::unique_ptr<DirichletBoundaryCondition> createDirichletBoundaryCondition(
BaseLib::ConfigTree const& config, MeshLib::Mesh const& bc_mesh,
NumLib::LocalToGlobalIndexMap const& dof_table_bulk, int const variable_id,
int const component_id,
const std::vector<std::unique_ptr<ProcessLib::ParameterBase>>& parameters)
{
DBUG("Constructing DirichletBoundaryCondition from config.");
//! \ogs_file_param{prj__process_variables__process_variable__boundary_conditions__boundary_condition__type}
config.checkConfigParameter("type", "Dirichlet");
//! \ogs_file_param{prj__process_variables__process_variable__boundary_conditions__boundary_condition__Dirichlet__parameter}
auto const param_name = config.getConfigParameter<std::string>("parameter");
DBUG("Using parameter %s", param_name.c_str());
auto& param = findParameter<double>(param_name, parameters, 1);
// In case of partitioned mesh the boundary could be empty, i.e. there is no
// boundary condition.
#ifdef USE_PETSC
// This can be extracted to createBoundaryCondition() but then the config
// parameters are not read and will cause an error.
// TODO (naumov): Add a function to ConfigTree for skipping the tags of the
// subtree and move the code up in createBoundaryCondition().
if (bc_mesh.getDimension() == 0 && bc_mesh.getNumberOfNodes() == 0 &&
bc_mesh.getNumberOfElements() == 0)
{
return nullptr;
}
#endif // USE_PETSC
return std::make_unique<DirichletBoundaryCondition>(
param, bc_mesh, dof_table_bulk, variable_id, component_id);
}
示例4: createRobinBoundaryCondition
std::unique_ptr<RobinBoundaryCondition> createRobinBoundaryCondition(
BaseLib::ConfigTree const& config, MeshLib::Mesh const& bc_mesh,
NumLib::LocalToGlobalIndexMap const& dof_table, int const variable_id,
int const component_id, unsigned const integration_order,
unsigned const shapefunction_order, unsigned const global_dim,
std::vector<std::unique_ptr<ParameterLib::ParameterBase>> const& parameters)
{
DBUG("Constructing RobinBcConfig from config.");
//! \ogs_file_param{prj__process_variables__process_variable__boundary_conditions__boundary_condition__type}
config.checkConfigParameter("type", "Robin");
//! \ogs_file_param{prj__process_variables__process_variable__boundary_conditions__boundary_condition__Robin__alpha}
auto const alpha_name = config.getConfigParameter<std::string>("alpha");
//! \ogs_file_param{prj__process_variables__process_variable__boundary_conditions__boundary_condition__Robin__u_0}
auto const u_0_name = config.getConfigParameter<std::string>("u_0");
auto const& alpha =
ParameterLib::findParameter<double>(alpha_name, parameters, 1);
auto const& u_0 =
ParameterLib::findParameter<double>(u_0_name, parameters, 1);
// In case of partitioned mesh the boundary could be empty, i.e. there is no
// boundary condition.
#ifdef USE_PETSC
// This can be extracted to createBoundaryCondition() but then the config
// parameters are not read and will cause an error.
// TODO (naumov): Add a function to ConfigTree for skipping the tags of the
// subtree and move the code up in createBoundaryCondition().
if (bc_mesh.getDimension() == 0 && bc_mesh.getNumberOfNodes() == 0 &&
bc_mesh.getNumberOfElements() == 0)
{
return nullptr;
}
#endif // USE_PETSC
return std::make_unique<RobinBoundaryCondition>(
integration_order, shapefunction_order, dof_table, variable_id,
component_id, global_dim, bc_mesh,
RobinBoundaryConditionData{alpha, u_0});
}
示例5: addIntegrationPointData
/// Adds the integration point data and creates meta data for it.
///
/// Returns meta data for the written integration point data.
static ProcessLib::IntegrationPointMetaData addIntegrationPointData(
MeshLib::Mesh& mesh, ProcessLib::IntegrationPointWriter const& writer)
{
auto const& ip_values = writer.values(/*t, x, dof_table*/);
assert(ip_values.size() == mesh.getNumberOfElements());
// create field data and fill it with nodal values, and an offsets cell
// array indicating where the cell's integration point data starts.
auto& field_data = *MeshLib::getOrCreateMeshProperty<double>(
mesh, writer.name(), MeshLib::MeshItemType::IntegrationPoint,
writer.numberOfComponents());
field_data.clear();
for (const auto& element_ip_values : ip_values)
{
std::copy(element_ip_values.begin(), element_ip_values.end(),
std::back_inserter(field_data));
}
return {writer.name(), writer.numberOfComponents(),
writer.integrationOrder()};
}
示例6: main
int main (int argc, char* argv[])
{
ApplicationsLib::LogogSetup logog_setup;
TCLAP::CmdLine cmd("Converts VTK mesh into OGS mesh.", ' ', "0.1");
TCLAP::ValueArg<std::string> mesh_in("i", "mesh-input-file",
"the name of the file containing the input mesh", true,
"", "file name of input mesh");
cmd.add(mesh_in);
TCLAP::ValueArg<std::string> mesh_out("o", "mesh-output-file",
"the name of the file the mesh will be written to", true,
"", "file name of output mesh");
cmd.add(mesh_out);
cmd.parse(argc, argv);
MeshLib::Mesh* mesh (MeshLib::IO::VtuInterface::readVTUFile(mesh_in.getValue()));
INFO("Mesh read: %d nodes, %d elements.", mesh->getNumberOfNodes(), mesh->getNumberOfElements());
MeshLib::IO::Legacy::MeshIO meshIO;
meshIO.setMesh(mesh);
meshIO.writeToFile(mesh_out.getValue());
return EXIT_SUCCESS;
}
示例7: mshNodesAlongPoly
std::unique_ptr<MeshLib::Mesh> appendLinesAlongPolylines(
const MeshLib::Mesh& mesh, const GeoLib::PolylineVec& ply_vec)
{
// copy existing nodes and elements
std::vector<MeshLib::Node*> vec_new_nodes = MeshLib::copyNodeVector(mesh.getNodes());
std::vector<MeshLib::Element*> vec_new_eles = MeshLib::copyElementVector(mesh.getElements(), vec_new_nodes);
auto const material_ids = materialIDs(mesh);
int const max_matID =
material_ids
? *(std::max_element(begin(*material_ids), end(*material_ids)))
: 0;
std::vector<int> new_mat_ids;
const std::size_t n_ply (ply_vec.size());
// for each polyline
for (std::size_t k(0); k < n_ply; k++)
{
const GeoLib::Polyline* ply = (*ply_vec.getVector())[k];
// search nodes on the polyline
MeshGeoToolsLib::MeshNodesAlongPolyline mshNodesAlongPoly(
mesh, *ply, mesh.getMinEdgeLength() * 0.5,
MeshGeoToolsLib::SearchAllNodes::Yes);
auto &vec_nodes_on_ply = mshNodesAlongPoly.getNodeIDs();
if (vec_nodes_on_ply.empty()) {
std::string ply_name;
ply_vec.getNameOfElementByID(k, ply_name);
INFO("No nodes found on polyline %s", ply_name.c_str());
continue;
}
// add line elements
for (std::size_t i=0; i<vec_nodes_on_ply.size()-1; i++) {
std::array<MeshLib::Node*, 2> element_nodes;
element_nodes[0] = vec_new_nodes[vec_nodes_on_ply[i]];
element_nodes[1] = vec_new_nodes[vec_nodes_on_ply[i+1]];
vec_new_eles.push_back(
new MeshLib::Line(element_nodes, vec_new_eles.size()));
new_mat_ids.push_back(max_matID+k+1);
}
}
// generate a mesh
const std::string name = mesh.getName() + "_with_lines";
auto new_mesh =
std::make_unique<MeshLib::Mesh>(name, vec_new_nodes, vec_new_eles);
auto new_material_ids =
new_mesh->getProperties().createNewPropertyVector<int>(
"MaterialIDs", MeshLib::MeshItemType::Cell);
if (!new_material_ids)
{
OGS_FATAL("Could not create MaterialIDs cell vector in new mesh.");
}
new_material_ids->reserve(new_mesh->getNumberOfElements());
if (material_ids != nullptr)
{
std::copy(begin(*material_ids), end(*material_ids),
std::back_inserter(*new_material_ids));
}
else
{
new_material_ids->resize(mesh.getNumberOfElements());
}
std::copy(begin(new_mat_ids), end(new_mat_ids),
std::back_inserter(*new_material_ids));
return new_mesh;
}
示例8: setMesh
void ElementTreeModel::setMesh(MeshLib::Mesh const& mesh)
{
this->clearView();
QList<QVariant> mesh_name;
mesh_name << "Name:" << QString::fromStdString(mesh.getName()) << "" << "" << "";
TreeItem* name_item = new TreeItem(mesh_name, _rootItem);
_rootItem->appendChild(name_item);
QList<QVariant> nodes_number;
nodes_number << "#Nodes: " << QString::number(mesh.getNumberOfNodes()) << "" << "";
TreeItem* nodes_item = new TreeItem(nodes_number, _rootItem);
_rootItem->appendChild(nodes_item);
QList<QVariant> elements_number;
elements_number << "#Elements: " << QString::number(mesh.getNumberOfElements()) << "" << "";
TreeItem* elements_item = new TreeItem(elements_number, _rootItem);
_rootItem->appendChild(elements_item);
const std::array<QString, 7> n_element_names = {{ "Lines:", "Triangles:", "Quads:", "Tetrahedra:", "Hexahedra:", "Pyramids:", "Prisms:" }};
const std::array<unsigned, 7>& n_element_types (MeshLib::MeshInformation::getNumberOfElementTypes(mesh));
for (std::size_t i=0; i<n_element_types.size(); ++i)
{
if (n_element_types[i])
{
QList<QVariant> elements_number;
elements_number << n_element_names[i] << QString::number(n_element_types[i]) << "" << "";
TreeItem* type_item = new TreeItem(elements_number, elements_item);
elements_item->appendChild(type_item);
}
}
QList<QVariant> bounding_box;
bounding_box << "Bounding Box" << "" << "" << "";
TreeItem* aabb_item = new TreeItem(bounding_box, _rootItem);
_rootItem->appendChild(aabb_item);
const GeoLib::AABB aabb (MeshLib::MeshInformation::getBoundingBox(mesh));
auto const& min = aabb.getMinPoint();
auto const& max = aabb.getMaxPoint();
QList<QVariant> min_aabb;
min_aabb << "Min:" << QString::number(min[0], 'f') << QString::number(min[1], 'f') << QString::number(min[2], 'f');
TreeItem* min_item = new TreeItem(min_aabb, aabb_item);
aabb_item->appendChild(min_item);
QList<QVariant> max_aabb;
max_aabb << "Max:" << QString::number(max[0], 'f') << QString::number(max[1], 'f') << QString::number(max[2], 'f');
TreeItem* max_item = new TreeItem(max_aabb, aabb_item);
aabb_item->appendChild(max_item);
QList<QVariant> edges;
edges << "Edge Length: " << "[" + QString::number(mesh.getMinEdgeLength(), 'f') + "," << QString::number(mesh.getMaxEdgeLength(), 'f') + "]" << "";
TreeItem* edge_item = new TreeItem(edges, _rootItem);
_rootItem->appendChild(edge_item);
std::vector<std::string> const& vec_names (mesh.getProperties().getPropertyVectorNames());
for (std::size_t i=0; i<vec_names.size(); ++i)
{
QList<QVariant> array_info;
array_info << QString::fromStdString(vec_names[i]) + ": ";
auto vec_bounds (MeshLib::MeshInformation::getValueBounds<int>(mesh, vec_names[i]));
if (vec_bounds.second != std::numeric_limits<int>::max())
array_info << "[" + QString::number(vec_bounds.first) + "," << QString::number(vec_bounds.second) + "]" << "";
else
{
auto vec_bounds (MeshLib::MeshInformation::getValueBounds<double>(mesh, vec_names[i]));
if (vec_bounds.second != std::numeric_limits<double>::max())
array_info << "[" + QString::number(vec_bounds.first) + "," << QString::number(vec_bounds.second) + "]" << "";
}
if (array_info.size() == 1)
array_info << "[ ?" << "? ]" << "";
TreeItem* vec_item = new TreeItem(array_info, _rootItem);
_rootItem->appendChild(vec_item);
}
reset();
}
示例9: addLayerToMesh
void MeshLayerMapper::addLayerToMesh(const MeshLib::Mesh &dem_mesh, unsigned layer_id, GeoLib::Raster const& raster)
{
const unsigned pyramid_base[3][4] =
{
{1, 3, 4, 2}, // Point 4 missing
{2, 4, 3, 0}, // Point 5 missing
{0, 3, 4, 1}, // Point 6 missing
};
std::size_t const nNodes = dem_mesh.getNumberOfNodes();
std::vector<MeshLib::Node*> const& nodes = dem_mesh.getNodes();
int const last_layer_node_offset = layer_id * nNodes;
// add nodes for new layer
for (std::size_t i=0; i<nNodes; ++i)
_nodes.push_back(getNewLayerNode(*nodes[i], *_nodes[last_layer_node_offset + i], raster, _nodes.size()));
std::vector<MeshLib::Element*> const& elems = dem_mesh.getElements();
std::size_t const nElems (dem_mesh.getNumberOfElements());
for (std::size_t i=0; i<nElems; ++i)
{
MeshLib::Element* elem (elems[i]);
if (elem->getGeomType() != MeshLib::MeshElemType::TRIANGLE)
continue;
unsigned node_counter(3), missing_idx(0);
std::array<MeshLib::Node*, 6> new_elem_nodes;
for (unsigned j=0; j<3; ++j)
{
new_elem_nodes[j] = _nodes[_nodes[last_layer_node_offset + elem->getNodeIndex(j)]->getID()];
new_elem_nodes[node_counter] = (_nodes[last_layer_node_offset + elem->getNodeIndex(j) + nNodes]);
if (new_elem_nodes[j]->getID() != new_elem_nodes[node_counter]->getID())
node_counter++;
else
missing_idx = j;
}
switch (node_counter)
{
case 6:
_elements.push_back(new MeshLib::Prism(new_elem_nodes));
_materials.push_back(layer_id);
break;
case 5:
std::array<MeshLib::Node*, 5> pyramid_nodes;
pyramid_nodes[0] = new_elem_nodes[pyramid_base[missing_idx][0]];
pyramid_nodes[1] = new_elem_nodes[pyramid_base[missing_idx][1]];
pyramid_nodes[2] = new_elem_nodes[pyramid_base[missing_idx][2]];
pyramid_nodes[3] = new_elem_nodes[pyramid_base[missing_idx][3]];
pyramid_nodes[4] = new_elem_nodes[missing_idx];
_elements.push_back(new MeshLib::Pyramid(pyramid_nodes));
_materials.push_back(layer_id);
break;
case 4:
std::array<MeshLib::Node*, 4> tet_nodes;
std::copy(new_elem_nodes.begin(), new_elem_nodes.begin() + node_counter, tet_nodes.begin());
_elements.push_back(new MeshLib::Tet(tet_nodes));
_materials.push_back(layer_id);
break;
default:
continue;
}
}
}
示例10: accept
void CreateStructuredGridDialog::accept()
{
if (inputIsEmpty())
return;
if ((this->xLengthEdit->text().toDouble() <= 0) ||
(this->yLengthEdit->text().toDouble() <= 0) ||
(this->zLengthEdit->text().toDouble() <= 0))
{
OGSError::box("Length needs to be larger than 0.");
return;
}
if ((this->xElemEdit->text().toDouble() <= 0) ||
(this->yElemEdit->text().toDouble() <= 0) ||
(this->zElemEdit->text().toDouble() <= 0))
{
OGSError::box("Number of elements needs to be larger than 0.");
return;
}
GeoLib::Point const origin(this->xOriginEdit->text().toDouble(),
this->yOriginEdit->text().toDouble(),
this->zOriginEdit->text().toDouble());
std::string const name (this->meshNameEdit->text().toStdString());
MeshLib::Mesh* mesh (nullptr);
if (this->lineButton->isChecked())
if (this->meshExtentButton->isChecked())
mesh = MeshLib::MeshGenerator::generateLineMesh(
this->xLengthEdit->text().toDouble(), this->xElemEdit->text().toInt(), origin, name);
else
mesh = MeshLib::MeshGenerator::generateLineMesh(
this->xElemEdit->text().toInt(), this->xLengthEdit->text().toDouble(), origin, name);
else if (this->triButton->isChecked())
if (this->meshExtentButton->isChecked())
mesh = MeshLib::MeshGenerator::generateRegularTriMesh(
this->xLengthEdit->text().toDouble(), this->yLengthEdit->text().toDouble(),
this->xElemEdit->text().toInt(), this->yElemEdit->text().toInt(),
origin, name);
else
mesh = MeshLib::MeshGenerator::generateRegularTriMesh(
this->xElemEdit->text().toInt(), this->yElemEdit->text().toInt(),
this->xLengthEdit->text().toDouble(), this->yLengthEdit->text().toDouble(),
origin, name);
else if (this->quadButton->isChecked())
if (this->meshExtentButton->isChecked())
mesh = MeshLib::MeshGenerator::generateRegularQuadMesh(
this->xLengthEdit->text().toDouble(), this->yLengthEdit->text().toDouble(),
this->xElemEdit->text().toInt(), this->yElemEdit->text().toInt(),
origin, name);
else
mesh = MeshLib::MeshGenerator::generateRegularQuadMesh(
this->xElemEdit->text().toInt(), this->yElemEdit->text().toInt(),
this->xLengthEdit->text().toDouble(), this->yLengthEdit->text().toDouble(),
origin, name);
else if (this->prismButton->isChecked())
if (this->meshExtentButton->isChecked())
mesh = MeshLib::MeshGenerator::generateRegularPrismMesh(
this->xLengthEdit->text().toDouble(), this->yLengthEdit->text().toDouble(),
this->zLengthEdit->text().toDouble(), this->xElemEdit->text().toInt(),
this->yElemEdit->text().toInt(), this->zElemEdit->text().toInt(),
origin, name);
else
mesh = MeshLib::MeshGenerator::generateRegularPrismMesh(
this->xLengthEdit->text().toDouble(), this->yLengthEdit->text().toDouble(),
this->zLengthEdit->text().toDouble(), this->xElemEdit->text().toInt(),
this->yElemEdit->text().toInt(), this->zElemEdit->text().toInt(),
origin, name);
else if (this->hexButton->isChecked())
if (this->meshExtentButton->isChecked())
mesh = MeshLib::MeshGenerator::generateRegularHexMesh(
this->xLengthEdit->text().toDouble(), this->yLengthEdit->text().toDouble(),
this->zLengthEdit->text().toDouble(), this->xElemEdit->text().toInt(),
this->yElemEdit->text().toInt(), this->zElemEdit->text().toInt(),
origin, name);
else
mesh = MeshLib::MeshGenerator::generateRegularHexMesh(
this->xElemEdit->text().toInt(), this->yElemEdit->text().toInt(),
this->zElemEdit->text().toInt(), this->xLengthEdit->text().toDouble(),
this->yLengthEdit->text().toDouble(), this->zLengthEdit->text().toDouble(),
origin, name);
if (mesh == nullptr)
{
OGSError::box("Error creating mesh.");
return;
}
boost::optional<MeshLib::PropertyVector<int>&> mat_ids (
mesh->getProperties().createNewPropertyVector<int>("MaterialIDs", MeshLib::MeshItemType::Cell));
mat_ids->reserve(mesh->getNumberOfElements());
std::fill_n(std::back_inserter(*mat_ids), mesh->getNumberOfElements(), 0);
emit meshAdded(mesh);
this->done(QDialog::Accepted);
}