本文整理汇总了C++中machinebasicblock::iterator::mayStore方法的典型用法代码示例。如果您正苦于以下问题:C++ iterator::mayStore方法的具体用法?C++ iterator::mayStore怎么用?C++ iterator::mayStore使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类machinebasicblock::iterator
的用法示例。
在下文中一共展示了iterator::mayStore方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: memAccessesCanBeReordered
static bool memAccessesCanBeReordered(MachineBasicBlock::iterator A,
MachineBasicBlock::iterator B,
AliasAnalysis *AA) {
// RAW or WAR - cannot reorder
// WAW - cannot reorder
// RAR - safe to reorder
return !(A->mayStore() || B->mayStore()) || !A->mayAlias(AA, *B, true);
}
示例2: memAccessesCanBeReordered
static bool memAccessesCanBeReordered(MachineBasicBlock::iterator A,
MachineBasicBlock::iterator B,
const SIInstrInfo *TII,
AliasAnalysis *AA) {
// RAW or WAR - cannot reorder
// WAW - cannot reorder
// RAR - safe to reorder
return !(A->mayStore() || B->mayStore()) ||
TII->areMemAccessesTriviallyDisjoint(*A, *B, AA);
}
示例3: delayHasHazard
bool Filler::delayHasHazard(MachineBasicBlock::iterator candidate,
bool &sawLoad,
bool &sawStore,
SmallSet<unsigned, 32> &RegDefs,
SmallSet<unsigned, 32> &RegUses)
{
if (candidate->isImplicitDef() || candidate->isKill())
return true;
if (candidate->mayLoad()) {
sawLoad = true;
if (sawStore)
return true;
}
if (candidate->mayStore()) {
if (sawStore)
return true;
sawStore = true;
if (sawLoad)
return true;
}
for (unsigned i = 0, e = candidate->getNumOperands(); i!= e; ++i) {
const MachineOperand &MO = candidate->getOperand(i);
if (!MO.isReg())
continue; // skip
unsigned Reg = MO.getReg();
if (MO.isDef()) {
// check whether Reg is defined or used before delay slot.
if (IsRegInSet(RegDefs, Reg) || IsRegInSet(RegUses, Reg))
return true;
}
if (MO.isUse()) {
// check whether Reg is defined before delay slot.
if (IsRegInSet(RegDefs, Reg))
return true;
}
}
unsigned Opcode = candidate->getOpcode();
// LD and LDD may have NOPs inserted afterwards in the case of some LEON
// processors, so we can't use the delay slot if this feature is switched-on.
if (Subtarget->insertNOPLoad()
&&
Opcode >= SP::LDDArr && Opcode <= SP::LDrr)
return true;
// Same as above for FDIV and FSQRT on some LEON processors.
if (Subtarget->fixAllFDIVSQRT()
&&
Opcode >= SP::FDIVD && Opcode <= SP::FSQRTD)
return true;
return false;
}
示例4: buildMUBUFOffsetLoadStore
// This differs from buildSpillLoadStore by only scavenging a VGPR. It does not
// need to handle the case where an SGPR may need to be spilled while spilling.
static bool buildMUBUFOffsetLoadStore(const SIInstrInfo *TII,
MachineFrameInfo &MFI,
MachineBasicBlock::iterator MI,
int Index,
int64_t Offset) {
MachineBasicBlock *MBB = MI->getParent();
const DebugLoc &DL = MI->getDebugLoc();
bool IsStore = MI->mayStore();
unsigned Opc = MI->getOpcode();
int LoadStoreOp = IsStore ?
getOffsetMUBUFStore(Opc) : getOffsetMUBUFLoad(Opc);
if (LoadStoreOp == -1)
return false;
unsigned Reg = TII->getNamedOperand(*MI, AMDGPU::OpName::vdata)->getReg();
BuildMI(*MBB, MI, DL, TII->get(LoadStoreOp))
.addReg(Reg, getDefRegState(!IsStore))
.addOperand(*TII->getNamedOperand(*MI, AMDGPU::OpName::srsrc))
.addOperand(*TII->getNamedOperand(*MI, AMDGPU::OpName::soffset))
.addImm(Offset)
.addImm(0) // glc
.addImm(0) // slc
.addImm(0) // tfe
.setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
return true;
}
示例5: expandStore
bool SIMemoryLegalizer::expandStore(const SIMemOpInfo &MOI,
MachineBasicBlock::iterator &MI) {
assert(!MI->mayLoad() && MI->mayStore());
bool Changed = false;
if (MOI.isAtomic()) {
if (MOI.getOrdering() == AtomicOrdering::Release ||
MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent)
Changed |= CC->insertWait(MI, MOI.getScope(),
MOI.getOrderingAddrSpace(),
SIMemOp::LOAD | SIMemOp::STORE,
MOI.getIsCrossAddressSpaceOrdering(),
Position::BEFORE);
return Changed;
}
// Atomic instructions do not have the nontemporal attribute.
if (MOI.isNonTemporal()) {
Changed |= CC->enableNonTemporal(MI);
return Changed;
}
return Changed;
}
示例6: assert
bool SIGfx6CacheControl::enableLoadCacheBypass(
const MachineBasicBlock::iterator &MI,
SIAtomicScope Scope,
SIAtomicAddrSpace AddrSpace) const {
assert(MI->mayLoad() && !MI->mayStore());
bool Changed = false;
if ((AddrSpace & SIAtomicAddrSpace::GLOBAL) != SIAtomicAddrSpace::NONE) {
/// TODO: Do not set glc for rmw atomic operations as they
/// implicitly bypass the L1 cache.
switch (Scope) {
case SIAtomicScope::SYSTEM:
case SIAtomicScope::AGENT:
Changed |= enableGLCBit(MI);
break;
case SIAtomicScope::WORKGROUP:
case SIAtomicScope::WAVEFRONT:
case SIAtomicScope::SINGLETHREAD:
// No cache to bypass.
break;
default:
llvm_unreachable("Unsupported synchronization scope");
}
}
/// The scratch address space does not need the global memory caches
/// to be bypassed as all memory operations by the same thread are
/// sequentially consistent, and no other thread can access scratch
/// memory.
/// Other address spaces do not hava a cache.
return Changed;
}
示例7:
X86CallFrameOptimization::InstClassification
X86CallFrameOptimization::classifyInstruction(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
const X86RegisterInfo &RegInfo, DenseSet<unsigned int> &UsedRegs) {
if (MI == MBB.end())
return Exit;
// The instructions we actually care about are movs onto the stack
int Opcode = MI->getOpcode();
if (Opcode == X86::MOV32mi || Opcode == X86::MOV32mr ||
Opcode == X86::MOV64mi32 || Opcode == X86::MOV64mr)
return Convert;
// Not all calling conventions have only stack MOVs between the stack
// adjust and the call.
// We want to tolerate other instructions, to cover more cases.
// In particular:
// a) PCrel calls, where we expect an additional COPY of the basereg.
// b) Passing frame-index addresses.
// c) Calling conventions that have inreg parameters. These generate
// both copies and movs into registers.
// To avoid creating lots of special cases, allow any instruction
// that does not write into memory, does not def or use the stack
// pointer, and does not def any register that was used by a preceding
// push.
// (Reading from memory is allowed, even if referenced through a
// frame index, since these will get adjusted properly in PEI)
// The reason for the last condition is that the pushes can't replace
// the movs in place, because the order must be reversed.
// So if we have a MOV32mr that uses EDX, then an instruction that defs
// EDX, and then the call, after the transformation the push will use
// the modified version of EDX, and not the original one.
// Since we are still in SSA form at this point, we only need to
// make sure we don't clobber any *physical* registers that were
// used by an earlier mov that will become a push.
if (MI->isCall() || MI->mayStore())
return Exit;
for (const MachineOperand &MO : MI->operands()) {
if (!MO.isReg())
continue;
unsigned int Reg = MO.getReg();
if (!RegInfo.isPhysicalRegister(Reg))
continue;
if (RegInfo.regsOverlap(Reg, RegInfo.getStackRegister()))
return Exit;
if (MO.isDef()) {
for (unsigned int U : UsedRegs)
if (RegInfo.regsOverlap(Reg, U))
return Exit;
}
}
return Skip;
}
示例8: SIMemOpInfo
Optional<SIMemOpInfo> SIMemOpAccess::getAtomicCmpxchgOrRmwInfo(
const MachineBasicBlock::iterator &MI) const {
assert(MI->getDesc().TSFlags & SIInstrFlags::maybeAtomic);
if (!(MI->mayLoad() && MI->mayStore()))
return None;
// Be conservative if there are no memory operands.
if (MI->getNumMemOperands() == 0)
return SIMemOpInfo();
return constructFromMIWithMMO(MI);
}
示例9: delayHasHazard
bool Filler::delayHasHazard(MachineBasicBlock::iterator candidate,
bool &sawLoad,
bool &sawStore,
SmallSet<unsigned, 32> &RegDefs,
SmallSet<unsigned, 32> &RegUses) {
if (candidate->isImplicitDef() || candidate->isKill())
return true;
// Loads or stores cannot be moved past a store to the delay slot
// and stores cannot be moved past a load.
if (candidate->mayLoad()) {
if (sawStore)
return true;
sawLoad = true;
}
if (candidate->mayStore()) {
if (sawStore)
return true;
sawStore = true;
if (sawLoad)
return true;
}
assert((!candidate->isCall() && !candidate->isReturn()) &&
"Cannot put calls or returns in delay slot.");
for (unsigned i = 0, e = candidate->getNumOperands(); i!= e; ++i) {
const MachineOperand &MO = candidate->getOperand(i);
unsigned Reg;
if (!MO.isReg() || !(Reg = MO.getReg()))
continue; // skip
if (MO.isDef()) {
// check whether Reg is defined or used before delay slot.
if (IsRegInSet(RegDefs, Reg) || IsRegInSet(RegUses, Reg))
return true;
}
if (MO.isUse()) {
// check whether Reg is defined before delay slot.
if (IsRegInSet(RegDefs, Reg))
return true;
}
}
return false;
}
示例10: delayHasHazard
bool Filler::delayHasHazard(MachineBasicBlock::iterator candidate,
bool &sawLoad,
bool &sawStore,
SmallSet<unsigned, 32> &RegDefs,
SmallSet<unsigned, 32> &RegUses)
{
if (candidate->isImplicitDef() || candidate->isKill())
return true;
if (candidate->mayLoad()) {
sawLoad = true;
if (sawStore)
return true;
}
if (candidate->mayStore()) {
if (sawStore)
return true;
sawStore = true;
if (sawLoad)
return true;
}
for (unsigned i = 0, e = candidate->getNumOperands(); i!= e; ++i) {
const MachineOperand &MO = candidate->getOperand(i);
if (!MO.isReg())
continue; // skip
unsigned Reg = MO.getReg();
if (MO.isDef()) {
//check whether Reg is defined or used before delay slot.
if (IsRegInSet(RegDefs, Reg) || IsRegInSet(RegUses, Reg))
return true;
}
if (MO.isUse()) {
//check whether Reg is defined before delay slot.
if (IsRegInSet(RegDefs, Reg))
return true;
}
}
return false;
}
示例11: commonChecksToProhibitNewValueJump
// These are the common checks that need to performed
// to determine if
// 1. compare instruction can be moved before jump.
// 2. feeder to the compare instruction can be moved before jump.
static bool commonChecksToProhibitNewValueJump(bool afterRA,
MachineBasicBlock::iterator MII) {
// If store in path, bail out.
if (MII->mayStore())
return false;
// if call in path, bail out.
if (MII->isCall())
return false;
// if NVJ is running prior to RA, do the following checks.
if (!afterRA) {
// The following Target Opcode instructions are spurious
// to new value jump. If they are in the path, bail out.
// KILL sets kill flag on the opcode. It also sets up a
// single register, out of pair.
// %D0<def> = S2_lsr_r_p %D0<kill>, %R2<kill>
// %R0<def> = KILL %R0, %D0<imp-use,kill>
// %P0<def> = C2_cmpeqi %R0<kill>, 0
// PHI can be anything after RA.
// COPY can remateriaze things in between feeder, compare and nvj.
if (MII->getOpcode() == TargetOpcode::KILL ||
MII->getOpcode() == TargetOpcode::PHI ||
MII->getOpcode() == TargetOpcode::COPY)
return false;
// The following pseudo Hexagon instructions sets "use" and "def"
// of registers by individual passes in the backend. At this time,
// we don't know the scope of usage and definitions of these
// instructions.
if (MII->getOpcode() == Hexagon::LDriw_pred ||
MII->getOpcode() == Hexagon::STriw_pred)
return false;
}
return true;
}
示例12: expandAtomicCmpxchgOrRmw
bool SIMemoryLegalizer::expandAtomicCmpxchgOrRmw(const SIMemOpInfo &MOI,
MachineBasicBlock::iterator &MI) {
assert(MI->mayLoad() && MI->mayStore());
bool Changed = false;
if (MOI.isAtomic()) {
if (MOI.getOrdering() == AtomicOrdering::Release ||
MOI.getOrdering() == AtomicOrdering::AcquireRelease ||
MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent ||
MOI.getFailureOrdering() == AtomicOrdering::SequentiallyConsistent)
Changed |= CC->insertWait(MI, MOI.getScope(),
MOI.getOrderingAddrSpace(),
SIMemOp::LOAD | SIMemOp::STORE,
MOI.getIsCrossAddressSpaceOrdering(),
Position::BEFORE);
if (MOI.getOrdering() == AtomicOrdering::Acquire ||
MOI.getOrdering() == AtomicOrdering::AcquireRelease ||
MOI.getOrdering() == AtomicOrdering::SequentiallyConsistent ||
MOI.getFailureOrdering() == AtomicOrdering::Acquire ||
MOI.getFailureOrdering() == AtomicOrdering::SequentiallyConsistent) {
Changed |= CC->insertWait(MI, MOI.getScope(),
MOI.getOrderingAddrSpace(),
isAtomicRet(*MI) ? SIMemOp::LOAD :
SIMemOp::STORE,
MOI.getIsCrossAddressSpaceOrdering(),
Position::AFTER);
Changed |= CC->insertCacheInvalidate(MI, MOI.getScope(),
MOI.getOrderingAddrSpace(),
Position::AFTER);
}
return Changed;
}
return Changed;
}
示例13: buildSpillLoadStore
void SIRegisterInfo::buildSpillLoadStore(MachineBasicBlock::iterator MI,
unsigned LoadStoreOp,
const MachineOperand *SrcDst,
unsigned ScratchRsrcReg,
unsigned ScratchOffset,
int64_t Offset,
RegScavenger *RS) const {
unsigned Value = SrcDst->getReg();
bool IsKill = SrcDst->isKill();
MachineBasicBlock *MBB = MI->getParent();
MachineFunction *MF = MI->getParent()->getParent();
const SISubtarget &ST = MF->getSubtarget<SISubtarget>();
const SIInstrInfo *TII = ST.getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
bool IsStore = MI->mayStore();
bool RanOutOfSGPRs = false;
bool Scavenged = false;
unsigned SOffset = ScratchOffset;
unsigned OriginalImmOffset = Offset;
unsigned NumSubRegs = getNumSubRegsForSpillOp(MI->getOpcode());
unsigned Size = NumSubRegs * 4;
if (!isUInt<12>(Offset + Size)) {
SOffset = AMDGPU::NoRegister;
// We don't have access to the register scavenger if this function is called
// during PEI::scavengeFrameVirtualRegs().
if (RS)
SOffset = RS->FindUnusedReg(&AMDGPU::SGPR_32RegClass);
if (SOffset == AMDGPU::NoRegister) {
// There are no free SGPRs, and since we are in the process of spilling
// VGPRs too. Since we need a VGPR in order to spill SGPRs (this is true
// on SI/CI and on VI it is true until we implement spilling using scalar
// stores), we have no way to free up an SGPR. Our solution here is to
// add the offset directly to the ScratchOffset register, and then
// subtract the offset after the spill to return ScratchOffset to it's
// original value.
RanOutOfSGPRs = true;
SOffset = ScratchOffset;
} else {
Scavenged = true;
}
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_ADD_U32), SOffset)
.addReg(ScratchOffset)
.addImm(Offset);
Offset = 0;
}
for (unsigned i = 0, e = NumSubRegs; i != e; ++i, Offset += 4) {
unsigned SubReg = NumSubRegs == 1 ?
Value : getSubReg(Value, getSubRegFromChannel(i));
unsigned SOffsetRegState = 0;
unsigned SrcDstRegState = getDefRegState(!IsStore);
if (i + 1 == e) {
SOffsetRegState |= getKillRegState(Scavenged);
// The last implicit use carries the "Kill" flag.
SrcDstRegState |= getKillRegState(IsKill);
}
BuildMI(*MBB, MI, DL, TII->get(LoadStoreOp))
.addReg(SubReg, getDefRegState(!IsStore))
.addReg(ScratchRsrcReg)
.addReg(SOffset, SOffsetRegState)
.addImm(Offset)
.addImm(0) // glc
.addImm(0) // slc
.addImm(0) // tfe
.addReg(Value, RegState::Implicit | SrcDstRegState)
.setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
}
if (RanOutOfSGPRs) {
// Subtract the offset we added to the ScratchOffset register.
BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_SUB_U32), ScratchOffset)
.addReg(ScratchOffset)
.addImm(OriginalImmOffset);
}
}