本文整理汇总了C++中llvm::opt::ArgStringList::push_back方法的典型用法代码示例。如果您正苦于以下问题:C++ ArgStringList::push_back方法的具体用法?C++ ArgStringList::push_back怎么用?C++ ArgStringList::push_back使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类llvm::opt::ArgStringList
的用法示例。
在下文中一共展示了ArgStringList::push_back方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: addArgs
void SanitizerArgs::addArgs(const llvm::opt::ArgList &Args,
llvm::opt::ArgStringList &CmdArgs) const {
if (!Kind)
return;
SmallString<256> SanitizeOpt("-fsanitize=");
#define SANITIZER(NAME, ID) \
if (Kind & ID) \
SanitizeOpt += NAME ",";
#include "clang/Basic/Sanitizers.def"
SanitizeOpt.pop_back();
CmdArgs.push_back(Args.MakeArgString(SanitizeOpt));
if (!BlacklistFile.empty()) {
SmallString<64> BlacklistOpt("-fsanitize-blacklist=");
BlacklistOpt += BlacklistFile;
CmdArgs.push_back(Args.MakeArgString(BlacklistOpt));
}
if (MsanTrackOrigins)
CmdArgs.push_back(Args.MakeArgString("-fsanitize-memory-track-origins=" +
llvm::utostr(MsanTrackOrigins)));
// Workaround for PR16386.
if (needsMsanRt())
CmdArgs.push_back(Args.MakeArgString("-fno-assume-sane-operator-new"));
}
示例2: addClangTargetOptions
void HIPToolChain::addClangTargetOptions(
const llvm::opt::ArgList &DriverArgs,
llvm::opt::ArgStringList &CC1Args,
Action::OffloadKind DeviceOffloadingKind) const {
HostTC.addClangTargetOptions(DriverArgs, CC1Args, DeviceOffloadingKind);
StringRef GpuArch = DriverArgs.getLastArgValue(options::OPT_march_EQ);
assert(!GpuArch.empty() && "Must have an explicit GPU arch.");
(void) GpuArch;
assert(DeviceOffloadingKind == Action::OFK_HIP &&
"Only HIP offloading kinds are supported for GPUs.");
CC1Args.push_back("-fcuda-is-device");
if (DriverArgs.hasFlag(options::OPT_fcuda_flush_denormals_to_zero,
options::OPT_fno_cuda_flush_denormals_to_zero, false))
CC1Args.push_back("-fcuda-flush-denormals-to-zero");
if (DriverArgs.hasFlag(options::OPT_fcuda_approx_transcendentals,
options::OPT_fno_cuda_approx_transcendentals, false))
CC1Args.push_back("-fcuda-approx-transcendentals");
if (DriverArgs.hasFlag(options::OPT_fcuda_rdc, options::OPT_fno_cuda_rdc,
false))
CC1Args.push_back("-fcuda-rdc");
}
示例3: AddCXXStdlibLibArgs
void WebAssembly::AddCXXStdlibLibArgs(const llvm::opt::ArgList &Args,
llvm::opt::ArgStringList &CmdArgs) const {
switch (GetCXXStdlibType(Args)) {
case ToolChain::CST_Libcxx:
CmdArgs.push_back("-lc++");
CmdArgs.push_back("-lc++abi");
break;
case ToolChain::CST_Libstdcxx:
llvm_unreachable("invalid stdlib name");
}
}
示例4: addClangTargetOptions
void CudaToolChain::addClangTargetOptions(
const llvm::opt::ArgList &DriverArgs,
llvm::opt::ArgStringList &CC1Args,
Action::OffloadKind DeviceOffloadingKind) const {
HostTC.addClangTargetOptions(DriverArgs, CC1Args, DeviceOffloadingKind);
StringRef GpuArch = DriverArgs.getLastArgValue(options::OPT_march_EQ);
assert(!GpuArch.empty() && "Must have an explicit GPU arch.");
assert((DeviceOffloadingKind == Action::OFK_OpenMP ||
DeviceOffloadingKind == Action::OFK_Cuda) &&
"Only OpenMP or CUDA offloading kinds are supported for NVIDIA GPUs.");
if (DeviceOffloadingKind == Action::OFK_Cuda) {
CC1Args.push_back("-fcuda-is-device");
if (DriverArgs.hasFlag(options::OPT_fcuda_flush_denormals_to_zero,
options::OPT_fno_cuda_flush_denormals_to_zero, false))
CC1Args.push_back("-fcuda-flush-denormals-to-zero");
if (DriverArgs.hasFlag(options::OPT_fcuda_approx_transcendentals,
options::OPT_fno_cuda_approx_transcendentals, false))
CC1Args.push_back("-fcuda-approx-transcendentals");
}
if (DriverArgs.hasArg(options::OPT_nocudalib))
return;
std::string LibDeviceFile = CudaInstallation.getLibDeviceFile(GpuArch);
if (LibDeviceFile.empty()) {
if (DeviceOffloadingKind == Action::OFK_OpenMP &&
DriverArgs.hasArg(options::OPT_S))
return;
getDriver().Diag(diag::err_drv_no_cuda_libdevice) << GpuArch;
return;
}
CC1Args.push_back("-mlink-cuda-bitcode");
CC1Args.push_back(DriverArgs.MakeArgString(LibDeviceFile));
if (CudaInstallation.version() >= CudaVersion::CUDA_90) {
// CUDA-9 uses new instructions that are only available in PTX6.0
CC1Args.push_back("-target-feature");
CC1Args.push_back("+ptx60");
} else {
// Libdevice in CUDA-7.0 requires PTX version that's more recent
// than LLVM defaults to. Use PTX4.2 which is the PTX version that
// came with CUDA-7.0.
CC1Args.push_back("-target-feature");
CC1Args.push_back("+ptx42");
}
}
示例5: addProfileRTLibs
void ToolChain::addProfileRTLibs(const llvm::opt::ArgList &Args,
llvm::opt::ArgStringList &CmdArgs) const {
if (!needsProfileRT(Args)) return;
CmdArgs.push_back(getCompilerRTArgString(Args, "profile"));
return;
}
示例6: addProfileRTLibs
void Linux::addProfileRTLibs(const llvm::opt::ArgList &Args,
llvm::opt::ArgStringList &CmdArgs) const {
if (!needsProfileRT(Args)) return;
// Add linker option -u__llvm_runtime_variable to cause runtime
// initialization module to be linked in.
if (!Args.hasArg(options::OPT_coverage))
CmdArgs.push_back(Args.MakeArgString(
Twine("-u", llvm::getInstrProfRuntimeHookVarName())));
ToolChain::addProfileRTLibs(Args, CmdArgs);
}
示例7: addIncludeLinkerOption
static void addIncludeLinkerOption(const ToolChain &TC,
const llvm::opt::ArgList &Args,
llvm::opt::ArgStringList &CmdArgs,
StringRef SymbolName) {
SmallString<64> LinkerOptionFlag;
LinkerOptionFlag = "--linker-option=/include:";
if (TC.getTriple().getArch() == llvm::Triple::x86) {
// Win32 mangles C function names with a '_' prefix.
LinkerOptionFlag += '_';
}
LinkerOptionFlag += SymbolName;
CmdArgs.push_back(Args.MakeArgString(LinkerOptionFlag));
}
示例8: addArgs
void SanitizerArgs::addArgs(const ToolChain &TC, const llvm::opt::ArgList &Args,
llvm::opt::ArgStringList &CmdArgs) const {
if (!Kind)
return;
const Driver &D = TC.getDriver();
SmallString<256> SanitizeOpt("-fsanitize=");
#define SANITIZER(NAME, ID) \
if (Kind & ID) \
SanitizeOpt += NAME ",";
#include "clang/Basic/Sanitizers.def"
SanitizeOpt.pop_back();
CmdArgs.push_back(Args.MakeArgString(SanitizeOpt));
if (!BlacklistFile.empty()) {
SmallString<64> BlacklistOpt("-fsanitize-blacklist=");
BlacklistOpt += BlacklistFile;
CmdArgs.push_back(Args.MakeArgString(BlacklistOpt));
}
if (MsanTrackOrigins)
CmdArgs.push_back(Args.MakeArgString("-fsanitize-memory-track-origins"));
if (needsAsanRt()) {
if (hasAsanZeroBaseShadow(TC)) {
CmdArgs.push_back(
Args.MakeArgString("-fsanitize-address-zero-base-shadow"));
} else if (TC.getTriple().getEnvironment() == llvm::Triple::Android) {
// Zero-base shadow is a requirement on Android.
D.Diag(diag::err_drv_argument_not_allowed_with)
<< "-fno-sanitize-address-zero-base-shadow"
<< lastArgumentForKind(D, Args, Address);
}
}
// Workaround for PR16386.
if (needsMsanRt())
CmdArgs.push_back(Args.MakeArgString("-fno-assume-sane-operator-new"));
}
示例9: switch
void CrossWindowsToolChain::
AddCXXStdlibLibArgs(const llvm::opt::ArgList &DriverArgs,
llvm::opt::ArgStringList &CC1Args) const {
switch (GetCXXStdlibType(DriverArgs)) {
case ToolChain::CST_Libcxx:
CC1Args.push_back("-lc++");
break;
case ToolChain::CST_Libstdcxx:
CC1Args.push_back("-lstdc++");
CC1Args.push_back("-lmingw32");
CC1Args.push_back("-lmingwex");
CC1Args.push_back("-lgcc");
CC1Args.push_back("-lmoldname");
CC1Args.push_back("-lmingw32");
break;
}
}
示例10: addArgs
void SanitizerArgs::addArgs(const ToolChain &TC, const llvm::opt::ArgList &Args,
llvm::opt::ArgStringList &CmdArgs,
types::ID InputType) const {
if (Sanitizers.empty())
return;
CmdArgs.push_back(Args.MakeArgString("-fsanitize=" + toString(Sanitizers)));
if (!RecoverableSanitizers.empty())
CmdArgs.push_back(Args.MakeArgString("-fsanitize-recover=" +
toString(RecoverableSanitizers)));
if (!TrapSanitizers.empty())
CmdArgs.push_back(
Args.MakeArgString("-fsanitize-trap=" + toString(TrapSanitizers)));
for (const auto &BLPath : BlacklistFiles) {
SmallString<64> BlacklistOpt("-fsanitize-blacklist=");
BlacklistOpt += BLPath;
CmdArgs.push_back(Args.MakeArgString(BlacklistOpt));
}
for (const auto &Dep : ExtraDeps) {
SmallString<64> ExtraDepOpt("-fdepfile-entry=");
ExtraDepOpt += Dep;
CmdArgs.push_back(Args.MakeArgString(ExtraDepOpt));
}
if (MsanTrackOrigins)
CmdArgs.push_back(Args.MakeArgString("-fsanitize-memory-track-origins=" +
llvm::utostr(MsanTrackOrigins)));
if (MsanUseAfterDtor)
CmdArgs.push_back(Args.MakeArgString("-fsanitize-memory-use-after-dtor"));
if (AsanFieldPadding)
CmdArgs.push_back(Args.MakeArgString("-fsanitize-address-field-padding=" +
llvm::utostr(AsanFieldPadding)));
// Translate available CoverageFeatures to corresponding clang-cc1 flags.
std::pair<int, const char *> CoverageFlags[] = {
std::make_pair(CoverageFunc, "-fsanitize-coverage-type=1"),
std::make_pair(CoverageBB, "-fsanitize-coverage-type=2"),
std::make_pair(CoverageEdge, "-fsanitize-coverage-type=3"),
std::make_pair(CoverageIndirCall, "-fsanitize-coverage-indirect-calls"),
std::make_pair(CoverageTraceBB, "-fsanitize-coverage-trace-bb"),
std::make_pair(CoverageTraceCmp, "-fsanitize-coverage-trace-cmp"),
std::make_pair(Coverage8bitCounters, "-fsanitize-coverage-8bit-counters")};
for (auto F : CoverageFlags) {
if (CoverageFeatures & F.first)
CmdArgs.push_back(Args.MakeArgString(F.second));
}
// MSan: Workaround for PR16386.
// ASan: This is mainly to help LSan with cases such as
// https://code.google.com/p/address-sanitizer/issues/detail?id=373
// We can't make this conditional on -fsanitize=leak, as that flag shouldn't
// affect compilation.
if (Sanitizers.has(Memory) || Sanitizers.has(Address))
CmdArgs.push_back(Args.MakeArgString("-fno-assume-sane-operator-new"));
if (TC.getTriple().isOSWindows() && needsUbsanRt()) {
// Instruct the code generator to embed linker directives in the object file
// that cause the required runtime libraries to be linked.
CmdArgs.push_back(Args.MakeArgString(
"--dependent-lib=" + TC.getCompilerRT(Args, "ubsan_standalone")));
if (types::isCXX(InputType))
CmdArgs.push_back(Args.MakeArgString(
"--dependent-lib=" + TC.getCompilerRT(Args, "ubsan_standalone_cxx")));
}
}
示例11: addArgs
void SanitizerArgs::addArgs(const ToolChain &TC, const llvm::opt::ArgList &Args,
llvm::opt::ArgStringList &CmdArgs,
types::ID InputType) const {
// Translate available CoverageFeatures to corresponding clang-cc1 flags.
// Do it even if Sanitizers.empty() since some forms of coverage don't require
// sanitizers.
std::pair<int, const char *> CoverageFlags[] = {
std::make_pair(CoverageFunc, "-fsanitize-coverage-type=1"),
std::make_pair(CoverageBB, "-fsanitize-coverage-type=2"),
std::make_pair(CoverageEdge, "-fsanitize-coverage-type=3"),
std::make_pair(CoverageIndirCall, "-fsanitize-coverage-indirect-calls"),
std::make_pair(CoverageTraceBB, "-fsanitize-coverage-trace-bb"),
std::make_pair(CoverageTraceCmp, "-fsanitize-coverage-trace-cmp"),
std::make_pair(CoverageTraceDiv, "-fsanitize-coverage-trace-div"),
std::make_pair(CoverageTraceGep, "-fsanitize-coverage-trace-gep"),
std::make_pair(Coverage8bitCounters, "-fsanitize-coverage-8bit-counters"),
std::make_pair(CoverageTracePC, "-fsanitize-coverage-trace-pc")};
for (auto F : CoverageFlags) {
if (CoverageFeatures & F.first)
CmdArgs.push_back(Args.MakeArgString(F.second));
}
if (TC.getTriple().isOSWindows() && needsUbsanRt()) {
// Instruct the code generator to embed linker directives in the object file
// that cause the required runtime libraries to be linked.
CmdArgs.push_back(Args.MakeArgString(
"--dependent-lib=" + TC.getCompilerRT(Args, "ubsan_standalone")));
if (types::isCXX(InputType))
CmdArgs.push_back(Args.MakeArgString(
"--dependent-lib=" + TC.getCompilerRT(Args, "ubsan_standalone_cxx")));
}
if (TC.getTriple().isOSWindows() && needsStatsRt()) {
CmdArgs.push_back(Args.MakeArgString("--dependent-lib=" +
TC.getCompilerRT(Args, "stats_client")));
// The main executable must export the stats runtime.
// FIXME: Only exporting from the main executable (e.g. based on whether the
// translation unit defines main()) would save a little space, but having
// multiple copies of the runtime shouldn't hurt.
CmdArgs.push_back(Args.MakeArgString("--dependent-lib=" +
TC.getCompilerRT(Args, "stats")));
addIncludeLinkerOption(TC, Args, CmdArgs, "__sanitizer_stats_register");
}
if (Sanitizers.empty())
return;
CmdArgs.push_back(Args.MakeArgString("-fsanitize=" + toString(Sanitizers)));
if (!RecoverableSanitizers.empty())
CmdArgs.push_back(Args.MakeArgString("-fsanitize-recover=" +
toString(RecoverableSanitizers)));
if (!TrapSanitizers.empty())
CmdArgs.push_back(
Args.MakeArgString("-fsanitize-trap=" + toString(TrapSanitizers)));
for (const auto &BLPath : BlacklistFiles) {
SmallString<64> BlacklistOpt("-fsanitize-blacklist=");
BlacklistOpt += BLPath;
CmdArgs.push_back(Args.MakeArgString(BlacklistOpt));
}
for (const auto &Dep : ExtraDeps) {
SmallString<64> ExtraDepOpt("-fdepfile-entry=");
ExtraDepOpt += Dep;
CmdArgs.push_back(Args.MakeArgString(ExtraDepOpt));
}
if (MsanTrackOrigins)
CmdArgs.push_back(Args.MakeArgString("-fsanitize-memory-track-origins=" +
llvm::utostr(MsanTrackOrigins)));
if (MsanUseAfterDtor)
CmdArgs.push_back(Args.MakeArgString("-fsanitize-memory-use-after-dtor"));
if (CfiCrossDso)
CmdArgs.push_back(Args.MakeArgString("-fsanitize-cfi-cross-dso"));
if (Stats)
CmdArgs.push_back(Args.MakeArgString("-fsanitize-stats"));
if (AsanFieldPadding)
CmdArgs.push_back(Args.MakeArgString("-fsanitize-address-field-padding=" +
llvm::utostr(AsanFieldPadding)));
if (AsanUseAfterScope)
CmdArgs.push_back(Args.MakeArgString("-fsanitize-address-use-after-scope"));
// MSan: Workaround for PR16386.
// ASan: This is mainly to help LSan with cases such as
// https://code.google.com/p/address-sanitizer/issues/detail?id=373
// We can't make this conditional on -fsanitize=leak, as that flag shouldn't
// affect compilation.
if (Sanitizers.has(Memory) || Sanitizers.has(Address))
CmdArgs.push_back(Args.MakeArgString("-fno-assume-sane-operator-new"));
// Require -fvisibility= flag on non-Windows when compiling if vptr CFI is
// enabled.
if (Sanitizers.hasOneOf(CFIClasses) && !TC.getTriple().isOSWindows() &&
!Args.hasArg(options::OPT_fvisibility_EQ)) {
TC.getDriver().Diag(clang::diag::err_drv_argument_only_allowed_with)
//.........这里部分代码省略.........
示例12: addClangTargetOptions
void CudaToolChain::addClangTargetOptions(
const llvm::opt::ArgList &DriverArgs,
llvm::opt::ArgStringList &CC1Args,
Action::OffloadKind DeviceOffloadingKind) const {
HostTC.addClangTargetOptions(DriverArgs, CC1Args, DeviceOffloadingKind);
StringRef GpuArch = DriverArgs.getLastArgValue(options::OPT_march_EQ);
assert(!GpuArch.empty() && "Must have an explicit GPU arch.");
assert((DeviceOffloadingKind == Action::OFK_OpenMP ||
DeviceOffloadingKind == Action::OFK_Cuda) &&
"Only OpenMP or CUDA offloading kinds are supported for NVIDIA GPUs.");
if (DeviceOffloadingKind == Action::OFK_Cuda) {
CC1Args.push_back("-fcuda-is-device");
if (DriverArgs.hasFlag(options::OPT_fcuda_flush_denormals_to_zero,
options::OPT_fno_cuda_flush_denormals_to_zero, false))
CC1Args.push_back("-fcuda-flush-denormals-to-zero");
if (DriverArgs.hasFlag(options::OPT_fcuda_approx_transcendentals,
options::OPT_fno_cuda_approx_transcendentals, false))
CC1Args.push_back("-fcuda-approx-transcendentals");
if (DriverArgs.hasFlag(options::OPT_fcuda_rdc, options::OPT_fno_cuda_rdc,
false))
CC1Args.push_back("-fcuda-rdc");
}
if (DriverArgs.hasArg(options::OPT_nocudalib))
return;
std::string LibDeviceFile = CudaInstallation.getLibDeviceFile(GpuArch);
if (LibDeviceFile.empty()) {
if (DeviceOffloadingKind == Action::OFK_OpenMP &&
DriverArgs.hasArg(options::OPT_S))
return;
getDriver().Diag(diag::err_drv_no_cuda_libdevice) << GpuArch;
return;
}
CC1Args.push_back("-mlink-cuda-bitcode");
CC1Args.push_back(DriverArgs.MakeArgString(LibDeviceFile));
// Libdevice in CUDA-7.0 requires PTX version that's more recent than LLVM
// defaults to. Use PTX4.2 by default, which is the PTX version that came with
// CUDA-7.0.
const char *PtxFeature = "+ptx42";
if (CudaInstallation.version() >= CudaVersion::CUDA_91) {
// CUDA-9.1 uses new instructions that are only available in PTX6.1+
PtxFeature = "+ptx61";
} else if (CudaInstallation.version() >= CudaVersion::CUDA_90) {
// CUDA-9.0 uses new instructions that are only available in PTX6.0+
PtxFeature = "+ptx60";
}
CC1Args.append({"-target-feature", PtxFeature});
if (DriverArgs.hasFlag(options::OPT_fcuda_short_ptr,
options::OPT_fno_cuda_short_ptr, false))
CC1Args.append({"-mllvm", "--nvptx-short-ptr"});
if (DeviceOffloadingKind == Action::OFK_OpenMP) {
SmallVector<StringRef, 8> LibraryPaths;
// Add path to lib and/or lib64 folders.
SmallString<256> DefaultLibPath =
llvm::sys::path::parent_path(getDriver().Dir);
llvm::sys::path::append(DefaultLibPath,
Twine("lib") + CLANG_LIBDIR_SUFFIX);
LibraryPaths.emplace_back(DefaultLibPath.c_str());
// Add user defined library paths from LIBRARY_PATH.
llvm::Optional<std::string> LibPath =
llvm::sys::Process::GetEnv("LIBRARY_PATH");
if (LibPath) {
SmallVector<StringRef, 8> Frags;
const char EnvPathSeparatorStr[] = {llvm::sys::EnvPathSeparator, '\0'};
llvm::SplitString(*LibPath, Frags, EnvPathSeparatorStr);
for (StringRef Path : Frags)
LibraryPaths.emplace_back(Path.trim());
}
std::string LibOmpTargetName =
"libomptarget-nvptx-" + GpuArch.str() + ".bc";
bool FoundBCLibrary = false;
for (StringRef LibraryPath : LibraryPaths) {
SmallString<128> LibOmpTargetFile(LibraryPath);
llvm::sys::path::append(LibOmpTargetFile, LibOmpTargetName);
if (llvm::sys::fs::exists(LibOmpTargetFile)) {
CC1Args.push_back("-mlink-cuda-bitcode");
CC1Args.push_back(DriverArgs.MakeArgString(LibOmpTargetFile));
FoundBCLibrary = true;
break;
}
}
if (!FoundBCLibrary)
getDriver().Diag(diag::warn_drv_omp_offload_target_missingbcruntime)
<< LibOmpTargetName;
}
}