本文整理汇总了C++中llvm::opt::ArgStringList::append方法的典型用法代码示例。如果您正苦于以下问题:C++ ArgStringList::append方法的具体用法?C++ ArgStringList::append怎么用?C++ ArgStringList::append使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类llvm::opt::ArgStringList
的用法示例。
在下文中一共展示了ArgStringList::append方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: addClangTargetOptions
void CudaToolChain::addClangTargetOptions(
const llvm::opt::ArgList &DriverArgs,
llvm::opt::ArgStringList &CC1Args,
Action::OffloadKind DeviceOffloadingKind) const {
HostTC.addClangTargetOptions(DriverArgs, CC1Args, DeviceOffloadingKind);
StringRef GpuArch = DriverArgs.getLastArgValue(options::OPT_march_EQ);
assert(!GpuArch.empty() && "Must have an explicit GPU arch.");
assert((DeviceOffloadingKind == Action::OFK_OpenMP ||
DeviceOffloadingKind == Action::OFK_Cuda) &&
"Only OpenMP or CUDA offloading kinds are supported for NVIDIA GPUs.");
if (DeviceOffloadingKind == Action::OFK_Cuda) {
CC1Args.push_back("-fcuda-is-device");
if (DriverArgs.hasFlag(options::OPT_fcuda_flush_denormals_to_zero,
options::OPT_fno_cuda_flush_denormals_to_zero, false))
CC1Args.push_back("-fcuda-flush-denormals-to-zero");
if (DriverArgs.hasFlag(options::OPT_fcuda_approx_transcendentals,
options::OPT_fno_cuda_approx_transcendentals, false))
CC1Args.push_back("-fcuda-approx-transcendentals");
if (DriverArgs.hasFlag(options::OPT_fcuda_rdc, options::OPT_fno_cuda_rdc,
false))
CC1Args.push_back("-fcuda-rdc");
}
if (DriverArgs.hasArg(options::OPT_nocudalib))
return;
std::string LibDeviceFile = CudaInstallation.getLibDeviceFile(GpuArch);
if (LibDeviceFile.empty()) {
if (DeviceOffloadingKind == Action::OFK_OpenMP &&
DriverArgs.hasArg(options::OPT_S))
return;
getDriver().Diag(diag::err_drv_no_cuda_libdevice) << GpuArch;
return;
}
CC1Args.push_back("-mlink-cuda-bitcode");
CC1Args.push_back(DriverArgs.MakeArgString(LibDeviceFile));
// Libdevice in CUDA-7.0 requires PTX version that's more recent than LLVM
// defaults to. Use PTX4.2 by default, which is the PTX version that came with
// CUDA-7.0.
const char *PtxFeature = "+ptx42";
if (CudaInstallation.version() >= CudaVersion::CUDA_91) {
// CUDA-9.1 uses new instructions that are only available in PTX6.1+
PtxFeature = "+ptx61";
} else if (CudaInstallation.version() >= CudaVersion::CUDA_90) {
// CUDA-9.0 uses new instructions that are only available in PTX6.0+
PtxFeature = "+ptx60";
}
CC1Args.append({"-target-feature", PtxFeature});
if (DriverArgs.hasFlag(options::OPT_fcuda_short_ptr,
options::OPT_fno_cuda_short_ptr, false))
CC1Args.append({"-mllvm", "--nvptx-short-ptr"});
if (DeviceOffloadingKind == Action::OFK_OpenMP) {
SmallVector<StringRef, 8> LibraryPaths;
// Add path to lib and/or lib64 folders.
SmallString<256> DefaultLibPath =
llvm::sys::path::parent_path(getDriver().Dir);
llvm::sys::path::append(DefaultLibPath,
Twine("lib") + CLANG_LIBDIR_SUFFIX);
LibraryPaths.emplace_back(DefaultLibPath.c_str());
// Add user defined library paths from LIBRARY_PATH.
llvm::Optional<std::string> LibPath =
llvm::sys::Process::GetEnv("LIBRARY_PATH");
if (LibPath) {
SmallVector<StringRef, 8> Frags;
const char EnvPathSeparatorStr[] = {llvm::sys::EnvPathSeparator, '\0'};
llvm::SplitString(*LibPath, Frags, EnvPathSeparatorStr);
for (StringRef Path : Frags)
LibraryPaths.emplace_back(Path.trim());
}
std::string LibOmpTargetName =
"libomptarget-nvptx-" + GpuArch.str() + ".bc";
bool FoundBCLibrary = false;
for (StringRef LibraryPath : LibraryPaths) {
SmallString<128> LibOmpTargetFile(LibraryPath);
llvm::sys::path::append(LibOmpTargetFile, LibOmpTargetName);
if (llvm::sys::fs::exists(LibOmpTargetFile)) {
CC1Args.push_back("-mlink-cuda-bitcode");
CC1Args.push_back(DriverArgs.MakeArgString(LibOmpTargetFile));
FoundBCLibrary = true;
break;
}
}
if (!FoundBCLibrary)
getDriver().Diag(diag::warn_drv_omp_offload_target_missingbcruntime)
<< LibOmpTargetName;
}
}