本文整理汇总了C++中fmod::DSP::getUserData方法的典型用法代码示例。如果您正苦于以下问题:C++ DSP::getUserData方法的具体用法?C++ DSP::getUserData怎么用?C++ DSP::getUserData使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类fmod::DSP
的用法示例。
在下文中一共展示了DSP::getUserData方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: myDSPCallback
FMOD_RESULT F_CALLBACK myDSPCallback(FMOD_DSP_STATE *dsp_state, float *inbuffer, float *outbuffer, unsigned int length, int inchannels, int *outchannels)
{
FMOD_RESULT result;
char name[256];
unsigned int userdata;
FMOD::DSP *thisdsp = (FMOD::DSP *)dsp_state->instance;
/*
This redundant call just shows using the instance parameter of FMOD_DSP_STATE to
call a DSP information function.
*/
result = thisdsp->getInfo(name, 0, 0, 0, 0);
ERRCHECK(result);
result = thisdsp->getUserData((void **)&userdata);
ERRCHECK(result);
if (delayBuffer == NULL)
delayBuffer = (float*)malloc(bufferSize * sizeof(float));
/*
This loop assumes inchannels = outchannels, which it will be if the DSP is created with '0'
as the number of channels in FMOD_DSP_DESCRIPTION.
Specifying an actual channel count will mean you have to take care of any number of channels coming in,
but outputting the number of channels specified. Generally it is best to keep the channel
count at 0 for maximum compatibility.
*/
for (unsigned int samp = 0; samp < length; samp++)
{
/*
Feel free to unroll this.
*/
for (int chan = 0; chan < *outchannels; chan++)
{
/*
This DSP filter just halves the volume!
Input is modified, and sent to output.
*/
//outbuffer[(samp * *outchannels) + chan] = inbuffer[(samp * inchannels) + chan] * 0.2f;
delayBuffer[((sampleCount * *outchannels) + chan) % bufferSize] = inbuffer[(samp * inchannels) + chan];
int delayBufferPosition = (((sampleCount - delay) * inchannels) + chan) % bufferSize;
if (delayBufferPosition >= 0)
{
outbuffer[(samp * *outchannels) + chan] = delayBuffer[delayBufferPosition];
}
else
{
outbuffer[(samp * *outchannels) + chan] = 0;
}
}
sampleCount++;
}
return FMOD_OK;
}
示例2: dspReset
//----------------------------------------------------------------------
FMOD_RESULT F_CALLBACK dspReset( FMOD_DSP_STATE* dsp_state )
{
CustomDSPImpl* customDSP = nullptr;
FMOD::DSP* thisDSP = (FMOD::DSP*)dsp_state->instance;
thisDSP->getUserData( (void**)&customDSP );
return customDSP->reset( dsp_state );
}
示例3: dspRead
//----------------------------------------------------------------------
FMOD_RESULT F_CALLBACK dspRead( FMOD_DSP_STATE * dsp_state, float * inBuffer, float* outBuffer, unsigned int length, int inChannels, int outChannels )
{
CustomDSPImpl* customDSP = nullptr;
FMOD::DSP* thisDSP = (FMOD::DSP*)dsp_state->instance;
thisDSP->getUserData( (void**)&customDSP );
return customDSP->read( dsp_state, inBuffer, outBuffer, length, inChannels, outChannels );
}
示例4: myDSPCallback
FMOD_RESULT F_CALLBACK myDSPCallback(FMOD_DSP_STATE *dsp_state, float *inbuffer, float *outbuffer, unsigned int length, int inchannels, int outchannels)
{
unsigned int count, userdata;
int count2;
char name[256];
FMOD::DSP *thisdsp = (FMOD::DSP *)dsp_state->instance;
/*
This redundant call just shows using the instance parameter of FMOD_DSP_STATE and using it to
call a DSP information function.
*/
thisdsp->getInfo(name, 0, 0, 0, 0);
thisdsp->getUserData((void **)&userdata);
/*
This loop assumes inchannels = outchannels, which it will be if the DSP is created with '0'
as the number of channels in FMOD_DSP_DESCRIPTION.
Specifying an actual channel count will mean you have to take care of any number of channels coming in,
but outputting the number of channels specified. Generally it is best to keep the channel
count at 0 for maximum compatibility.
*/
for (count = 0; count < length; count++)
{
/*
Feel free to unroll this.
*/
for (count2 = 0; count2 < outchannels; count2++)
{
/*
This DSP filter just halves the volume!
Input is modified, and sent to output.
*/
outbuffer[(count * outchannels) + count2] = inbuffer[(count * inchannels) + count2] * 0.2f;
}
}
return FMOD_OK;
}
示例5: DSPCallback
FMOD_RESULT F_CALLBACK DSPCallback(FMOD_DSP_STATE* dsp_state,
f32* inbuffer, f32* outbuffer, u32 length,
s32 inchannels, s32* outchannels){
assert(*outchannels >= 2);
FMOD::DSP *thisdsp = (FMOD::DSP *)dsp_state->instance;
void* ud = nullptr;
cfmod(thisdsp->getUserData(&ud));
s32 samplerate = 0;
cfmod(dsp_state->callbacks->getsamplerate(dsp_state, &samplerate));
f64 inc = 1.0/samplerate;
auto dud = static_cast<DSPUserdata*>(ud);
auto& phase = dud->phase;
for(u32 i = 0; i < length; i++){
f32 out = 0.f;
f32 outl = 0.f;
f32 outr = 0.f;
sched.PlayNotes([&](const NoteTimePair& n){
constexpr f32 attack = 0.1;
auto pos = (sched.time-n.begin)/n.length;
f32 env;
if(pos < attack){
env = pos/attack;
}else{
env = (1.0-pos)/(1.0-attack);
}
f32 o = 0.0;
// o += Wave::sin(n.freq*phase*0.5) * env * 0.2;
// o += Wave::sin(n.freq*phase*2.0) * env;
f32 mod = Wave::sin(phase*10.f) * .02f;
f32 ph = n.freq*phase + mod;
f32 a = std::min(1.f, std::max(env*env*env * .5f, 0.f)); //Wave::sin(phase*1.f)*.5f + .5f;
env *= n.volume;
o += (Wave::sin(ph) * (1-a) + Wave::sqr(ph*2.f) * a) * env;
// o += Wave::sin((n.freq + Wave::tri(phase*6.f) * .01f)*phase) * env;
// o += Wave::sin((n.freq + 0.5)*phase) * env;
out += o/3.0;
});
chords.PlayNotes([&](const NoteTimePair& n){
constexpr f32 attack = 0.005;
auto pos = (chords.time-n.begin)/n.length;
f32 env;
if(pos < attack){
env = pos/attack;
}else{
env = (1.0-pos)/(1.0-attack);
}
f32 mod = Wave::sin(phase*10.f) * .02f;
f32 ph = n.freq*phase + mod;
f32 a = env*env * .3f + .3f + Wave::sin(phase*6.f) * 0.2f;
a = std::min(1.f, std::max(a, 0.f));
f32 phaseShift = 0.2f + Wave::sin(phase*3.f) * .2f + .5f; //phase / 6.f;
outl += (Wave::sin(ph) * (1-a) + Wave::tri(ph) * a) * env * n.volume;
outr += (Wave::sin(ph + phaseShift) * (1-a) + Wave::tri(ph * 1.01) * a) * env * n.volume;
});
perc.PlayNotes([&](const NoteTimePair& n){
constexpr f32 attack = 0.1;
auto pos = (perc.time-n.begin)/n.length;
f32 env = 0;
if(pos < attack){
env = pos/attack;
}else{
env = (1.0-pos)/(1.0-attack);
}
env *= n.volume;
f32 o = 0;
o += Wave::sin(n.freq*phase) * env;
o += Wave::tri(n.freq*phase) * env;
out += o;
});
outbuffer[i**outchannels+0] = out + outl/3.f;
outbuffer[i**outchannels+1] = out + outr/3.f;
phase += inc;
chords.Update(inc/60.0* tempo);
sched.Update(inc/60.0* tempo);
perc.Update(inc/60.0* tempo);
}
return FMOD_OK;
}