本文整理汇总了C++中eigen::Vector2d类的典型用法代码示例。如果您正苦于以下问题:C++ Vector2d类的具体用法?C++ Vector2d怎么用?C++ Vector2d使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Vector2d类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: pinv
// @from http://listengine.tuxfamily.org/lists.tuxfamily.org/eigen/2010/01/msg00173.html
static bool pinv(const Eigen::Matrix2d& a, Eigen::Matrix2d& a_pinv)
{
// see : http://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse#The_general_case_and_the_SVD_method
if (a.rows() < a.cols())
return false;
// SVD
Eigen::JacobiSVD<Eigen::Matrix2d> svdA(a, Eigen::ComputeFullU | Eigen::ComputeFullV);
Eigen::Vector2d vSingular = svdA.singularValues();
// Build a diagonal matrix with the Inverted Singular values
// The pseudo inverted singular matrix is easy to compute :
// is formed by replacing every nonzero entry by its reciprocal (inversing).
Eigen::Vector2d vPseudoInvertedSingular(svdA.matrixV().cols(),1);
for (int iRow = 0; iRow < vSingular.rows(); iRow++)
{
if (fabs(vSingular(iRow)) <= 1e-10) // Todo : Put epsilon in parameter
{
vPseudoInvertedSingular(iRow, 0) = 0.;
}
else
{
vPseudoInvertedSingular(iRow, 0) = 1. / vSingular(iRow);
}
}
// A little optimization here
Eigen::Matrix2d mAdjointU = svdA.matrixU().adjoint().block(0, 0, vSingular.rows(), svdA.matrixU().adjoint().cols());
// Pseudo-Inversion : V * S * U'
a_pinv = (svdA.matrixV() * vPseudoInvertedSingular.asDiagonal()) * mAdjointU;
return true;
}
示例2: selfLandmarkDataCallback
void SelfRobot::selfLandmarkDataCallback(const read_omni_dataset::LRMLandmarksData::ConstPtr& landmarkData, int RobotNumber)
{
ROS_WARN(" got landmark data from self robot (ID=%d)",RobotNumber);
uint seq = landmarkData->header.seq;
// There are a total of 10 distinct, known and static landmarks in this dataset.
for(int i=0;i<10; i++)
{
if(landmarkData->found[i])
{
///Below is the procedure to calculate the observation covariance associate with the ball measurement made by the robots. Caution: Make sure the validity of the calculations below by crosschecking the obvious things, e.g., covariance cannot be negative or very close to 0
Eigen::Vector2d tempLandmarkObsVec = Eigen::Vector2d(landmarkData->x[i],landmarkData->y[i]);
double d = tempLandmarkObsVec.norm(),
phi = atan2(landmarkData->y[i],landmarkData->x[i]);
double covDD = (K1*fabs(1.0-(landmarkData->AreaLandMarkActualinPixels[i]/landmarkData->AreaLandMarkExpectedinPixels[i])))*(d*d);
double covPhiPhi = K2*(1/(d+1));
double covXX = pow(cos(phi),2) * covDD
+ pow(sin(phi),2) * ( pow(d,2) * covPhiPhi + covDD * covPhiPhi );
double covYY = pow(sin(phi),2) * covDD
+ pow(cos(phi),2) * ( pow(d,2) * covPhiPhi + covDD * covPhiPhi );
ROS_INFO("Landmark %d found in the image, refer to the method to see how covariances are calculated",i);
}
}
}
示例3: selfTargetDataCallback
void SelfRobot::selfTargetDataCallback(const read_omni_dataset::BallData::ConstPtr& ballData, int RobotNumber)
{
ROS_WARN("Got ball data from self robot %d",RobotNumber);
Time curObservationTime = ballData->header.stamp;
if(ballData->found)
{
///Below is the procedure to calculate the observation covariance associate with the ball measurement made by the robots. Caution: Make sure the validity of the calculations below by crosschecking the obvious things, e.g., covariance cannot be negative or very close to 0
Eigen::Vector2d tempBallObsVec = Eigen::Vector2d(ballData->x,ballData->y);
double d = tempBallObsVec.norm(),
phi = atan2(ballData->y,ballData->x);
double covDD = (double)(1/ballData->mismatchFactor)*(K3*d + K4*(d*d));
double covPhiPhi = K5*(1/(d+1));
double covXX = pow(cos(phi),2) * covDD
+ pow(sin(phi),2) * ( pow(d,2) * covPhiPhi + covDD * covPhiPhi );
double covYY = pow(sin(phi),2) * covDD
+ pow(cos(phi),2) * ( pow(d,2) * covPhiPhi + covDD * covPhiPhi );
ROS_INFO("Ball found in the image, refer to the method to see how covariances are calculated");
}
else
{
ROS_INFO("Ball not found in the image");
}
}
示例4:
Eigen::Vector2d CircularGroundPath::RelativePositionCalculator::localCoordinates( Eigen::Vector3d const& _center, Eigen::Vector2d global_coordinates )
{
Eigen::Vector2d local;
local.x() = global_coordinates.x() - _center.x();
local.y() = global_coordinates.y() - _center.y();
return local;
}
示例5: rectifyBilinearLookup
/**
* Computes the undistorted image coordinates of an input pixel via
* bilinear interpolation of its integer-coordinate 4-neighboors.
*
* \param dist_uv input distorted pixel coordinates.
* \param rect_uv output parameter.
*/
void rectifyBilinearLookup(const Eigen::Vector2d& dist_uv,
Eigen::Vector2d* rect_uv) const {
int u = (int)dist_uv.x();
int v = (int)dist_uv.y();
assert(u >= 0 && v >= 0 && u < _input_camera.width && v < _input_camera.height);
// weights
float wright = (dist_uv.x() - u);
float wbottom = (dist_uv.y() - v);
float w[4] = {
(1 - wright) * (1 - wbottom),
wright * (1 - wbottom),
(1 - wright) * wbottom,
wright * wbottom
};
int ra_index = v * _input_camera.width + u;
uint32_t neighbor_indices[4] = {
ra_index,
ra_index + 1,
ra_index + _input_camera.width,
ra_index + _input_camera.width + 1
};
rect_uv->x() = 0;
rect_uv->y() = 0;
for(int i = 0; i < 4; ++i) {
rect_uv->x() += w[i] * _map_x[neighbor_indices[i]];
rect_uv->y() += w[i] * _map_y[neighbor_indices[i]];
}
}
示例6:
bool ProbabilisticStereoTriangulator<CAMERA_GEOMETRY_T>::computeReprojectionError4(
const std::shared_ptr<okvis::MultiFrame>& frame, size_t camId,
size_t keypointId, const Eigen::Vector4d& homogeneousPoint,
double& outError) const {
OKVIS_ASSERT_LT_DBG(Exception, keypointId, frame->numKeypoints(camId),
"Index out of bounds");
Eigen::Vector2d y;
okvis::cameras::CameraBase::ProjectionStatus status = frame
->geometryAs<CAMERA_GEOMETRY_T>(camId)->projectHomogeneous(
homogeneousPoint, &y);
if (status == okvis::cameras::CameraBase::ProjectionStatus::Successful) {
Eigen::Vector2d k;
Eigen::Matrix2d inverseCov = Eigen::Matrix2d::Identity();
double keypointStdDev;
frame->getKeypoint(camId, keypointId, k);
frame->getKeypointSize(camId, keypointId, keypointStdDev);
keypointStdDev = 0.8 * keypointStdDev / 12.0;
inverseCov *= 1.0 / (keypointStdDev * keypointStdDev);
y -= k;
outError = y.dot(inverseCov * y);
return true;
} else
return false;
}
示例7: acos
void
LaserSensorModel2D::setInformationForVertexPoint(EdgeSE2PointXYCov*& edge, VertexPointXYCov*& point, LaserSensorParams& params)
{
double beamAngle = atan2(edge->measurement()(1), edge->measurement()(0));
///calculate incidence angle in point frame
Eigen::Vector2d beam = edge->measurement();
Eigen::Vector2d normal = point->normal();
beam = beam.normalized();
normal = normal.normalized();
double incidenceAngle = 0.0;
if(point->covariance() != Eigen::Matrix2d::Identity())
incidenceAngle = acos(normal.dot(beam));
double d = (tan(params.angularResolution * 0.5) * edge->measurement().norm());
///uncertainty of the surface measurement in direction of the beam
double dk = fabs(params.scale * (d / cos(incidenceAngle)));
edge->information().setIdentity();
edge->information()(0,0) = 1.0 / ((dk + params.sensorPrecision) * (dk + params.sensorPrecision));
double cError = 0.001 * edge->measurement().norm();
edge->information()(1,1) = 1.0 / (cError * cError);
Eigen::Rotation2Dd rot(beamAngle);
Eigen::Matrix2d mrot = rot.toRotationMatrix();
edge->information() = mrot * edge->information() * mrot.transpose();
}
示例8: ipb
std::vector<cv::DMatch> Registrator3P::getInliers(const ptam::KeyFrame& kfa, const ptam::KeyFrame& kfb,
const std::vector<cv::DMatch>& matches,
const Sophus::SE3d& relPoseAB,
double threshold,
std::vector<Observation>& obs)
{
Sophus::SE3d relPoseBA = relPoseAB.inverse();
std::vector<cv::DMatch> inliers;
double thresh2 = threshold*threshold;
for (uint i = 0; i < matches.size(); i++) {
const cv::DMatch& m = matches[i];
const Eigen::Vector3d& mpa = cs_geom::toEigenVec(kfa.mapPoints[m.queryIdx]->v3RelativePos);
cv::Point2f imbcv;
int scale = 1;// << kfb.keypoints[m.trainIdx].octave;
imbcv.x = kfb.keypoints[m.trainIdx].pt.x * scale;
imbcv.y = kfb.keypoints[m.trainIdx].pt.y * scale;
Eigen::Vector2d ipb(imbcv.x, imbcv.y);
Eigen::Vector2d err = cam_[kfb.nSourceCamera].project3DtoPixel(relPoseBA*mpa) - ipb;;
if (err.dot(err) < thresh2) {
inliers.push_back(m);
obs.push_back(Observation(mpa, cam_[kfb.nSourceCamera].unprojectPixel(ipb)));
}
}
return inliers;
}
示例9: drawEllipse
void drawEllipse(cv::Mat & im, const Eigen::Matrix2d & A, const Eigen::Vector2d & b, const double sigma, const cv::Scalar col, const int thickness, const bool bMarkCentre)
{
if(bMarkCentre)
{
const cv::Point centre(cvRound(b.x()), cvRound(b.y()));
cv::circle(im, centre, 2, col, -1);
}
const int nNumPoints = 100;
const Eigen::Matrix2d rootA = matrixSqrt(A);
cv::Point p_last;
for(int i=0;i<nNumPoints;i++)
{
const double dTheta = i*(2*M_PI/nNumPoints);
const Eigen::Vector2d p1 (sin(dTheta), cos(dTheta));
const Eigen::Vector2d p_sigma = p1 * sigma;
const Eigen::Vector2d p_trans = rootA*p_sigma + b;
const cv::Point p_im(cvRound(p_trans.x()), cvRound(p_trans.y()));
if(i>0)
cv::line(im, p_last, p_im, col, thickness);
p_last = p_im;
}
}
示例10: calculateMatrixForm
void ConvexPolygon::calculateMatrixForm() {
//every two adjacent endpoints define a line -> inequality constraint
//first, resize A and b. x and b are column vectors
this->A = Eigen::MatrixXd (this->endpoints.size(),2);
this->b = Eigen::VectorXd (this->endpoints.size());
Eigen::Vector2d normal;
for(size_t i=1; i<endpoints.size(); i++) {
//to define the correct line direction, we also need a point on the inside of the constraint - the seed
normal(0) = endpoints[i-1](1) - endpoints[i](1);
normal(1) = endpoints[i](0) - endpoints[i-1](0);
if(normal.dot(seed) > 0) { //we want the outward pointing normal, so n.dot(s) < 0
normal = -normal;
}
normal.normalize();
b(i-1) = -endpoints[i].dot(normal); //endpoints[i];
A(i-1,0) = normal(0);
A(i-1,1) = normal(1);
}
normal(0) = endpoints.back()(1) - endpoints.front()(1);
normal(1) = endpoints.front()(0) - endpoints.back()(0);
if(normal.dot(seed) > 0) { //we want the outward pointing normal, so n.dot(s) < 0
normal = -normal;
}
normal.normalize();
b(endpoints.size()-1) = -endpoints.front().dot(normal); //endpoints[i];
A(endpoints.size()-1,0) = normal(0);
A(endpoints.size()-1,1) = normal(1);
}
示例11: A
/**
* @brief The 'regression2D' method can be used to fit a line to a given point set.
* @param points_begin set begin iterator
* @param points_end set end iterator
* @param fit_start the start of the line fit
* @param fit_end the set termintating iterator position
* @param line the parameterized line to work with
*/
inline void regression2D(const std::vector<LaserBeam>::const_iterator &points_begin, const std::vector<LaserBeam>::const_iterator &points_end,
Eigen::ParametrizedLine<double, 2> &line)
{
std::vector<LaserBeam>::const_iterator back_it = points_end;
--back_it;
Eigen::Vector2d front (points_begin->posX(), points_end->posY());
Eigen::Vector2d back (back_it->posX(), back_it->posY());
unsigned int size = std::distance(points_begin, points_end);
Eigen::MatrixXd A(size, 2);
Eigen::VectorXd b(size);
A.setOnes();
Eigen::Vector2d dxy = (front - back).cwiseAbs();
bool solve_for_x = dxy.x() > dxy.y();
if(solve_for_x) {
/// SOLVE FOR X
int i = 0;
for(std::vector<LaserBeam>::const_iterator it = points_begin ; it != points_end ; ++it, ++i)
{
A(i,1) = it->posX();
b(i) = it->posY();
}
} else {
/// SOLVE FOR Y
int i = 0;
for(std::vector<LaserBeam>::const_iterator it = points_begin ; it != points_end ; ++it, ++i)
{
A(i,1) = it->posY();
b(i) = it->posX();
}
}
Eigen::VectorXd weights = A.jacobiSvd(Eigen::ComputeThinU | Eigen::ComputeThinV).solve(b);
double alpha = weights(0);
double beta = weights(1);
Eigen::Vector2d from;
Eigen::Vector2d to;
if(solve_for_x) {
from(0) = 0.0;
from(1) = alpha;
to(0) = 1.0;
to(1) = alpha + beta;
} else {
from(0) = alpha;
from(1) = 0.0;
to(0) = alpha + beta;
to(1) = 1.0;
}
Eigen::Vector2d fit_start;
Eigen::Vector2d fit_end;
line = Eigen::ParametrizedLine<double, 2>(from, (to - from).normalized());
fit_start = line.projection(front);
fit_end = line.projection(back);
line = Eigen::ParametrizedLine<double, 2>(fit_start, (fit_end - fit_start));
}
示例12: visualize
void ElevationVisualization::visualize(
const grid_map::GridMap& map,
const std::string& typeNameElevation,
const std::string& typeNameColor,
const float lowerValueBound,
const float upperValueBound)
{
// Set marker info.
marker_.header.frame_id = map.getFrameId();
marker_.header.stamp.fromNSec(map.getTimestamp());
marker_.scale.x = map.getResolution();
marker_.scale.y = map.getResolution();
// Clear points.
marker_.points.clear();
marker_.colors.clear();
float markerHeightOffset = static_cast<float>(markerHeight_/2.0);
const Eigen::Array2i buffSize = map.getBufferSize();
const Eigen::Array2i buffStartIndex = map.getBufferStartIndex();
const bool haveColor = map.isType("color");
for (unsigned int i = 0; i < buffSize(0); ++i)
{
for (unsigned int j = 0; j < buffSize(1); ++j)
{
// Getting map data.
const Eigen::Array2i cellIndex(i, j);
const Eigen::Array2i buffIndex =
grid_map_lib::getBufferIndexFromIndex(cellIndex, buffSize, buffStartIndex);
const float& elevation = map.at(typeNameElevation, buffIndex);
if(std::isnan(elevation))
continue;
const float color = haveColor ? map.at(typeNameColor, buffIndex) : lowerValueBound;
// Add marker point.
Eigen::Vector2d position;
map.getPosition(buffIndex, position);
geometry_msgs::Point point;
point.x = position.x();
point.y = position.y();
point.z = elevation - markerHeightOffset;
marker_.points.push_back(point);
// Add marker color.
if(haveColor)
{
std_msgs::ColorRGBA markerColor =
grid_map_visualization::color_utils::interpolateBetweenColors(
color, lowerValueBound, upperValueBound, lowerColor_, upperColor_);
marker_.colors.push_back(markerColor);
}
}
}
markerPublisher_.publish(marker_);
}
示例13: findSubmapParameters
void PolygonIterator::findSubmapParameters(const grid_map::Polygon& polygon, Eigen::Array2i& startIndex, Eigen::Array2i& bufferSize) const
{
Eigen::Vector2d topLeft = polygon_.getVertices()[0];
Eigen::Vector2d bottomRight = topLeft;
for (const auto& vertex : polygon_.getVertices()) {
topLeft = topLeft.array().max(vertex.array());
bottomRight = bottomRight.array().min(vertex.array());
}
limitPositionToRange(topLeft, mapLength_, mapPosition_);
limitPositionToRange(bottomRight, mapLength_, mapPosition_);
getIndexFromPosition(startIndex, topLeft, mapLength_, mapPosition_, resolution_, bufferSize_, bufferStartIndex_);
Eigen::Array2i endIndex;
getIndexFromPosition(endIndex, bottomRight, mapLength_, mapPosition_, resolution_, bufferSize_, bufferStartIndex_);
bufferSize = endIndex - startIndex + Eigen::Array2i::Ones();
}
示例14: d_shortest_elem
double
FittingCurve2d::findClosestElementMidPoint (const ON_NurbsCurve &nurbs, const Eigen::Vector2d &pt, double hint)
{
// evaluate hint
double param = hint;
double points[2];
nurbs.Evaluate (param, 0, 2, points);
Eigen::Vector2d p (points[0], points[1]);
Eigen::Vector2d r = p - pt;
double d_shortest_hint = r.squaredNorm ();
double d_shortest_elem (DBL_MAX);
// evaluate elements
std::vector<double> elements = pcl::on_nurbs::FittingCurve2d::getElementVector (nurbs);
double seg = 1.0 / (nurbs.Order () - 1);
for (unsigned i = 0; i < elements.size () - 1; i++)
{
double &xi0 = elements[i];
double &xi1 = elements[i + 1];
double dxi = xi1 - xi0;
for (unsigned j = 0; j < nurbs.Order (); j++)
{
double xi = xi0 + (seg * j) * dxi;
nurbs.Evaluate (xi, 0, 2, points);
p (0) = points[0];
p (1) = points[1];
r = p - pt;
double d = r.squaredNorm ();
if (d < d_shortest_elem)
{
d_shortest_elem = d;
param = xi;
}
}
}
if(d_shortest_hint < d_shortest_elem)
return hint;
else
return param;
}
示例15: pan
void Camera::pan(Eigen::Vector2i oldPosition, Eigen::Vector2i newPosition){
const Eigen::Vector2d delta =
(newPosition - oldPosition).eval().template cast<double>();
const Eigen::Vector3d forwardVector = lookAt - position;
const Eigen::Vector3d rightVector = forwardVector.cross(up);
const Eigen::Vector3d upVector = rightVector.cross(forwardVector);
const double scale = 0.0005;
position += scale*(-delta.x()*rightVector +
delta.y()*upVector);
}