本文整理汇总了C++中eigen::SparseMatrix类的典型用法代码示例。如果您正苦于以下问题:C++ SparseMatrix类的具体用法?C++ SparseMatrix怎么用?C++ SparseMatrix使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了SparseMatrix类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: computeLaplacianOperator
void LaplacianOperator::computeLaplacianOperator( Eigen::SparseMatrix<double>& laplacianOperator )
{
laplacianOperator.resize(mMeshVertexCount,mMeshVertexCount);
laplacianOperator.reserve(Eigen::VectorXi::Constant(mMeshVertexCount,10));
for (int i = 0; i < mMeshVertexCount; i++)
{
/* 如果第i个点没有邻接点,即它是一个孤立的点,那么它的laplacian坐标为0 */
if( adjacentMatrix.innerVector(i).nonZeros() == 0)
{
laplacianOperator.insert(i,i) = 0;
continue;
}
laplacianOperator.insert(i,i) = 1;
#ifdef MY_DEBUG
int adjCount = 0;
#endif
for (Eigen::SparseMatrix<double>::InnerIterator it(adjacentMatrix,i); it; it++)
{
if(i != it.row())
{
laplacianOperator.insert(i,it.row()) = -1/degreeMatrix(i);
#ifdef MY_DEBUG
adjCount++;
if(adjCount >= 10)
printf("InnerVector size should expand! CurrentMax:%d.\n",adjCount);
#endif
}
}
}
}
示例2: sparse
IGL_INLINE void igl::sparse(
const IndexVector & I,
const IndexVector & J,
const ValueVector & V,
const size_t m,
const size_t n,
Eigen::SparseMatrix<T>& X)
{
using namespace std;
using namespace Eigen;
assert((int)I.maxCoeff() < (int)m);
assert((int)I.minCoeff() >= 0);
assert((int)J.maxCoeff() < (int)n);
assert((int)J.minCoeff() >= 0);
assert(I.size() == J.size());
assert(J.size() == V.size());
// Really we just need .size() to be the same, but this is safer
assert(I.rows() == J.rows());
assert(J.rows() == V.rows());
assert(I.cols() == J.cols());
assert(J.cols() == V.cols());
vector<Triplet<T> > IJV;
IJV.reserve(I.size());
for(int x = 0;x<I.size();x++)
{
IJV.push_back(Triplet<T >(I(x),J(x),V(x)));
}
X.resize(m,n);
X.setFromTriplets(IJV.begin(),IJV.end());
}
示例3: ZSparseMatrix
ZSparseMatrix Assembler2D::getDisplacementStrainMatrix() {
typedef Eigen::Triplet<double> T;
std::vector<T> triplets;
for (size_t i=0; i<m_mesh->getNbrElements(); i++) {
Eigen::MatrixXd dN = m_DN[i];
VectorI idx = m_mesh->getElement(i);
assert(idx.size() == 3);
double V = m_mesh->getElementVolume(i);
// e_xx
size_t row = i * 3;
for (size_t k=0; k<3; k++) {
triplets.push_back(T(row, idx[k]*2, dN(k,0)));
}
// e_yy
row++;
for (size_t k=0; k<3; k++) {
triplets.push_back(T(row, idx[k]*2+1, dN(k,1)));
}
// e_xy
row++;
for (size_t k=0; k<3; k++) {
triplets.push_back(T(row, idx[k]*2 , dN(k,1) / 2.0));
triplets.push_back(T(row, idx[k]*2+1, dN(k,0) / 2.0));
}
}
Eigen::SparseMatrix<double> B = Eigen::SparseMatrix<double>(3*m_mesh->getNbrElements(), 2*m_mesh->getNbrNodes());
B.setFromTriplets(triplets.begin(), triplets.end());
return ZSparseMatrix(B);
}
示例4: SetConstraints
void SetConstraints(Eigen::SparseMatrix<float>::InnerIterator& it, int index)
{
if (it.row() == index || it.col() == index)
{
it.valueRef() = it.row() == it.col() ? 1.0f : 0.0f;
}
}
示例5: evalModel
void ProbitNoise::evalModel(Eigen::SparseMatrix<double> & Ytest, const int n, Eigen::VectorXd & predictions, Eigen::VectorXd & predictions_var, const Eigen::MatrixXd &cols, const Eigen::MatrixXd &rows, double mean_rating) {
const unsigned N = Ytest.nonZeros();
Eigen::VectorXd pred(N);
Eigen::VectorXd test(N);
// #pragma omp parallel for schedule(dynamic,8) reduction(+:se, se_avg) <- dark magic :)
for (int k = 0; k < Ytest.outerSize(); ++k) {
int idx = Ytest.outerIndexPtr()[k];
for (Eigen::SparseMatrix<double>::InnerIterator it(Ytest,k); it; ++it) {
pred[idx] = nCDF(cols.col(it.col()).dot(rows.col(it.row())));
test[idx] = it.value();
// https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Online_algorithm
double pred_avg;
if (n == 0) {
pred_avg = pred[idx];
} else {
double delta = pred[idx] - predictions[idx];
pred_avg = (predictions[idx] + delta / (n + 1));
predictions_var[idx] += delta * (pred[idx] - pred_avg);
}
predictions[idx++] = pred_avg;
}
}
auc_test_onesample = auc(pred,test);
auc_test = auc(predictions, test);
}
示例6: B
ZSparseMatrix Assembler2D::getLaplacianMatrix() {
typedef Eigen::Triplet<double> T;
std::vector<T> triplets;
for (size_t i=0; i<m_mesh->getNbrElements(); ++i)
{
VectorI idx = m_mesh->getElement(i);
assert(idx.size() == 3);
Eigen::MatrixXd& dN = m_DN[i];
// Small strain-displacement matrix
//
Eigen::MatrixXd B(2,3);
B << dN(0,0), dN(1,0), dN(2,0),
dN(0,1), dN(1,1), dN(2,1);
Eigen::MatrixXd k_el = B.transpose() * B * m_mesh->getElementVolume(i);
for (size_t j=0; j<3; ++j)
for (size_t k=0; k<3; ++k)
triplets.push_back(T(idx[j], idx[k], k_el(j,k)));
}
Eigen::SparseMatrix<double> L = Eigen::SparseMatrix<double>(m_mesh->getNbrNodes(), m_mesh->getNbrNodes());
L.setFromTriplets(triplets.begin(), triplets.end());
return ZSparseMatrix(L);
}
示例7: crouzeix_raviart_massmatrix
void igl::crouzeix_raviart_massmatrix(
const Eigen::PlainObjectBase<DerivedV> & V,
const Eigen::PlainObjectBase<DerivedF> & F,
const Eigen::PlainObjectBase<DerivedE> & E,
const Eigen::PlainObjectBase<DerivedEMAP> & EMAP,
Eigen::SparseMatrix<MT> & M)
{
using namespace Eigen;
using namespace std;
assert(F.cols() == 3);
// Mesh should be edge-manifold
assert(is_edge_manifold(F));
// number of elements (triangles)
int m = F.rows();
// Get triangle areas
VectorXd TA;
doublearea(V,F,TA);
vector<Triplet<MT> > MIJV(3*m);
for(int f = 0;f<m;f++)
{
for(int c = 0;c<3;c++)
{
MIJV[f+m*c] = Triplet<MT>(EMAP(f+m*c),EMAP(f+m*c),TA(f)*0.5);
}
}
M.resize(E.rows(),E.rows());
M.setFromTriplets(MIJV.begin(),MIJV.end());
}
示例8: find
IGL_INLINE void igl::find(
const Eigen::SparseMatrix<T>& X,
Eigen::DenseBase<DerivedI> & I,
Eigen::DenseBase<DerivedJ> & J,
Eigen::DenseBase<DerivedV> & V)
{
// Resize outputs to fit nonzeros
I.derived().resize(X.nonZeros(),1);
J.derived().resize(X.nonZeros(),1);
V.derived().resize(X.nonZeros(),1);
int i = 0;
// Iterate over outside
for(int k=0; k<X.outerSize(); ++k)
{
// Iterate over inside
for(typename Eigen::SparseMatrix<T>::InnerIterator it (X,k); it; ++it)
{
V(i) = it.value();
I(i) = it.row();
J(i) = it.col();
i++;
}
}
}
示例9: Create_spMat_U
void LTransform::Create_spMat_U(Eigen::SparseMatrix<double> &spMat_U){
//*****************************
//2015-06-29 TYPE=Notes
//*****************************
//求解笛卡尔坐标;2.构建控制点矩阵spMat_U;
//*****************************
//spMat_U=spMat_V;
//*****************************
qDebug() <<"START:spMat_U.insert"<< endl;
for(int i=0;i<LMT_point.size();i++){
spMat_U.insert(LMT_point[i].index,0)=LMT_point[i].X;
spMat_U.insert(LMT_point[i].index,1)=LMT_point[i].Y;
spMat_U.insert(LMT_point[i].index,2)=LMT_point[i].Z;
}
for (int k=0; k<spMat_V.outerSize(); ++k)
for (Eigen::SparseMatrix<double>::InnerIterator it(spMat_V,k); it; ++it){
if(!objMesh.is_limitP(LMT_point,it.row())){
spMat_U.insert(it.row(),it.col())=it.value();
}
}
qDebug() <<"END:spMat_U.insert"<< endl;
}//控制点坐标矩阵;
示例10: min
IGL_INLINE void igl::min(
const Eigen::SparseMatrix<AType> & A,
const int dim,
Eigen::PlainObjectBase<DerivedB> & B,
Eigen::PlainObjectBase<DerivedI> & I)
{
const int n = A.cols();
const int m = A.rows();
B.resize(dim==1?n:m);
B.setConstant(std::numeric_limits<typename DerivedB::Scalar>::max());
I.resize(dim==1?n:m);
for_each(A,[&B,&I,&dim](int i, int j,const typename DerivedB::Scalar v)
{
if(dim == 2)
{
std::swap(i,j);
}
// Coded as if dim == 1, assuming swap for dim == 2
if(v < B(j))
{
B(j) = v;
I(j) = i;
}
});
Eigen::VectorXi Z;
find_zero(A,dim,Z);
for(int j = 0;j<I.size();j++)
{
if(Z(j) != (dim==1?m:n) && 0 < B(j))
{
B(j) = 0;
I(j) = Z(j);
}
}
}
示例11:
IGL_INLINE void igl::PolyVectorFieldFinder<DerivedV, DerivedF>::computeCoefficientLaplacian(int n, Eigen::SparseMatrix<std::complex<typename DerivedV::Scalar> > &D)
{
std::vector<Eigen::Triplet<std::complex<typename DerivedV::Scalar> >> tripletList;
// For every non-border edge
for (unsigned eid=0; eid<numE; ++eid)
{
if (!isBorderEdge[eid])
{
int fid0 = E2F(eid,0);
int fid1 = E2F(eid,1);
tripletList.push_back(Eigen::Triplet<std::complex<typename DerivedV::Scalar> >(fid0,
fid0,
std::complex<typename DerivedV::Scalar>(1.)));
tripletList.push_back(Eigen::Triplet<std::complex<typename DerivedV::Scalar> >(fid1,
fid1,
std::complex<typename DerivedV::Scalar>(1.)));
tripletList.push_back(Eigen::Triplet<std::complex<typename DerivedV::Scalar> >(fid0,
fid1,
-1.*std::polar(1.,-1.*n*K[eid])));
tripletList.push_back(Eigen::Triplet<std::complex<typename DerivedV::Scalar> >(fid1,
fid0,
-1.*std::polar(1.,1.*n*K[eid])));
}
}
D.resize(numF,numF);
D.setFromTriplets(tripletList.begin(), tripletList.end());
}
示例12: in_element
IGL_INLINE void igl::in_element(
const Eigen::MatrixXd & V,
const Eigen::MatrixXi & Ele,
const Eigen::MatrixXd & Q,
const InElementAABB & aabb,
Eigen::SparseMatrix<double> & I)
{
using namespace std;
using namespace Eigen;
using namespace igl;
const int Qr = Q.rows();
std::vector<Triplet<double> > IJV;
IJV.reserve(Qr);
#pragma omp parallel for
for(int e = 0;e<Qr;e++)
{
// find all
const auto R = aabb.find(V,Ele,Q.row(e),false);
for(const auto r : R)
{
#pragma omp critical
IJV.push_back(Triplet<double>(e,r,1));
}
}
I.resize(Qr,Ele.rows());
I.setFromTriplets(IJV.begin(),IJV.end());
}
示例13: slice_into
IGL_INLINE void igl::slice_into(
const Eigen::SparseMatrix<T>& X,
const Eigen::Matrix<int,Eigen::Dynamic,1> & R,
const Eigen::Matrix<int,Eigen::Dynamic,1> & C,
Eigen::SparseMatrix<T>& Y)
{
int xm = X.rows();
int xn = X.cols();
assert(R.size() == xm);
assert(C.size() == xn);
#ifndef NDEBUG
int ym = Y.size();
int yn = Y.size();
assert(R.minCoeff() >= 0);
assert(R.maxCoeff() < ym);
assert(C.minCoeff() >= 0);
assert(C.maxCoeff() < yn);
#endif
// create temporary dynamic sparse matrix
Eigen::DynamicSparseMatrix<T, Eigen::RowMajor> dyn_Y(Y);
// Iterate over outside
for(int k=0; k<X.outerSize(); ++k)
{
// Iterate over inside
for(typename Eigen::SparseMatrix<T>::InnerIterator it (X,k); it; ++it)
{
dyn_Y.coeffRef(R(it.row()),C(it.col())) = it.value();
}
}
Y = Eigen::SparseMatrix<T>(dyn_Y);
}
示例14: erodeSparse
void place::erodeSparse(const Eigen::SparseMatrix<double> &src,
Eigen::SparseMatrix<double> &dst) {
dst = Eigen::SparseMatrix<double>(src.rows(), src.cols());
std::vector<Eigen::Triplet<double>> tripletList;
Eigen::MatrixXd srcNS = Eigen::MatrixXd(src);
for (int i = 0; i < srcNS.cols(); ++i) {
for (int j = 0; j < srcNS.rows(); ++j) {
double value = 0.0;
for (int k = -1; k < 1; ++k) {
for (int l = -1; l < 1; ++l) {
if (i + k < 0 || i + k >= srcNS.cols() || j + l < 0 ||
j + l >= srcNS.rows())
continue;
else
value = std::max(value, srcNS(j + l, i + k));
}
}
if (value != 0)
tripletList.push_back(Eigen::Triplet<double>(j, i, value));
}
}
dst.setFromTriplets(tripletList.begin(), tripletList.end());
}
示例15: create_matrix
// fmap case
void create_matrix(const paracel::list_type<paracel::str_type> & linelst,
Eigen::SparseMatrix<double, Eigen::RowMajor> & blk_mtx,
paracel::dict_type<size_t, paracel::str_type> & rm,
paracel::dict_type<size_t, paracel::str_type> & cm,
paracel::dict_type<size_t, int> & dm,
paracel::dict_type<size_t, int> & col_dm) {
paracel::scheduler scheduler(m_comm, pattern, mix); // TODO
// hash lines into slotslst
auto result = scheduler.lines_organize(linelst, parserfunc);
std::cout << "procs " << m_comm.get_rank() << " slotslst generated" << std::endl;
m_comm.sync();
// alltoall exchange
auto stf = scheduler.exchange(result);
std::cout << "procs " << m_comm.get_rank() << " get desirable lines" << std::endl;
m_comm.sync();
// mapping inds to ids, get rmap, cmap, std_new...
paracel::list_type<std::tuple<size_t, size_t, double> > stf_new;
scheduler.index_mapping(stf, stf_new, rm, cm, dm, col_dm);
std::cout << "procs " << m_comm.get_rank() << " index mapping" << std::endl;
// create block sparse matrix
paracel::list_type<eigen_triple> nonzero_tpls;
for(auto & tpl : stf_new) {
nonzero_tpls.push_back(eigen_triple(std::get<0>(tpl), std::get<1>(tpl), std::get<2>(tpl)));
}
blk_mtx.resize(rm.size(), cm.size());
blk_mtx.setFromTriplets(nonzero_tpls.begin(), nonzero_tpls.end());
}