当前位置: 首页>>代码示例>>C++>>正文


C++ MatrixXi::col方法代码示例

本文整理汇总了C++中eigen::MatrixXi::col方法的典型用法代码示例。如果您正苦于以下问题:C++ MatrixXi::col方法的具体用法?C++ MatrixXi::col怎么用?C++ MatrixXi::col使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在eigen::MatrixXi的用法示例。


在下文中一共展示了MatrixXi::col方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: main

int main(int argc, char *argv[])
{
  using namespace Eigen;
  using namespace std;

  // Load a quad mesh generated by a conjugate field
  igl::readOFF(TUTORIAL_SHARED_PATH "/inspired_mesh_quads_Conjugate.off", VQC, FQC);

  // Convert it in a triangle mesh
  FQCtri.resize(2*FQC.rows(), 3);
  FQCtri <<  FQC.col(0),FQC.col(1),FQC.col(2),
             FQC.col(2),FQC.col(3),FQC.col(0);
  igl::slice( VQC, FQC.col(0).eval(), 1, PQC0);
  igl::slice( VQC, FQC.col(1).eval(), 1, PQC1);
  igl::slice( VQC, FQC.col(2).eval(), 1, PQC2);
  igl::slice( VQC, FQC.col(3).eval(), 1, PQC3);

  // Planarize it
  igl::planarize_quad_mesh(VQC, FQC, 100, 0.005, VQCplan);

  // Convert the planarized mesh to triangles
  igl::slice( VQCplan, FQC.col(0).eval(), 1, PQC0plan);
  igl::slice( VQCplan, FQC.col(1).eval(), 1, PQC1plan);
  igl::slice( VQCplan, FQC.col(2).eval(), 1, PQC2plan);
  igl::slice( VQCplan, FQC.col(3).eval(), 1, PQC3plan);

  // Launch the viewer
  igl::viewer::Viewer viewer;
  key_down(viewer,'2',0);
  viewer.data.invert_normals = true;
  viewer.data.show_lines = false;
  viewer.callback_key_down = &key_down;
  viewer.launch();
}
开发者ID:schuellc,项目名称:libigl,代码行数:34,代码来源:main.cpp

示例2: incidence

int NuTo::Structure::ElementsCreate(int rInterpolationTypeId, const Eigen::MatrixXi& rNodeNumbers)
{
    std::vector<int> newElementIds;
    // go through the elements
    for (int iNode = 0; iNode < rNodeNumbers.cols(); ++iNode)
    {
        auto column = rNodeNumbers.col(iNode);
        std::vector<int> incidence(column.data(), column.data() + column.size());
        int newElementId = ElementCreate(rInterpolationTypeId, incidence);
        newElementIds.push_back(newElementId);
    }

    bool showTime = mShowTime;
    mShowTime = false;

    // create element group containing the new elements
    int newElementGroup = GroupCreate(eGroupId::Elements);
    for (int newElementId : newElementIds)
        GroupAddElement(newElementGroup, newElementId);

    mShowTime = showTime;
    return newElementGroup;
}
开发者ID:nutofem,项目名称:nuto,代码行数:23,代码来源:StructureElement.cpp

示例3: arap_dof_precomputation

IGL_INLINE bool igl::arap_dof_precomputation(
  const Eigen::MatrixXd & V, 
  const Eigen::MatrixXi & F,
  const LbsMatrixType & M,
  const Eigen::Matrix<int,Eigen::Dynamic,1> & G,
  ArapDOFData<LbsMatrixType, SSCALAR> & data)
{
  using namespace Eigen;
  typedef Matrix<SSCALAR, Dynamic, Dynamic> MatrixXS;
  // number of mesh (domain) vertices
  int n = V.rows();
  // cache problem size
  data.n = n;
  // dimension of mesh
  data.dim = V.cols();
  assert(data.dim == M.rows()/n);
  assert(data.dim*n == M.rows());
  if(data.dim == 3)
  {
    // Check if z-coordinate is all zeros
    if(V.col(2).minCoeff() == 0 && V.col(2).maxCoeff() == 0)
    {
      data.effective_dim = 2;
    }
  }else
  {
    data.effective_dim = data.dim;
  }
  // Number of handles
  data.m = M.cols()/data.dim/(data.dim+1);
  assert(data.m*data.dim*(data.dim+1) == M.cols());
  //assert(m == C.rows());

  //printf("n=%d; dim=%d; m=%d;\n",n,data.dim,data.m);

  // Build cotangent laplacian
  SparseMatrix<double> Lcot;
  //printf("cotmatrix()\n");
  cotmatrix(V,F,Lcot);
  // Discrete laplacian (should be minus matlab version)
  SparseMatrix<double> Lapl = -2.0*Lcot;
#ifdef EXTREME_VERBOSE
  cout<<"LaplIJV=["<<endl;print_ijv(Lapl,1);cout<<endl<<"];"<<
    endl<<"Lapl=sparse(LaplIJV(:,1),LaplIJV(:,2),LaplIJV(:,3),"<<
    Lapl.rows()<<","<<Lapl.cols()<<");"<<endl;
#endif

  // Get group sum scatter matrix, when applied sums all entries of the same
  // group according to G
  SparseMatrix<double> G_sum;
  if(G.size() == 0)
  {
    speye(n,G_sum);
  }else
  {
    // groups are defined per vertex, convert to per face using mode
    Eigen::Matrix<int,Eigen::Dynamic,1> GG;
    if(data.energy == ARAP_ENERGY_TYPE_ELEMENTS)
    {
      MatrixXi GF(F.rows(),F.cols());
      for(int j = 0;j<F.cols();j++)
      {
        Matrix<int,Eigen::Dynamic,1> GFj;
        slice(G,F.col(j),GFj);
        GF.col(j) = GFj;
      }
      mode<int>(GF,2,GG);
    }else
    {
      GG=G;
    }
    //printf("group_sum_matrix()\n");
    group_sum_matrix(GG,G_sum);
  }

#ifdef EXTREME_VERBOSE
  cout<<"G_sumIJV=["<<endl;print_ijv(G_sum,1);cout<<endl<<"];"<<
    endl<<"G_sum=sparse(G_sumIJV(:,1),G_sumIJV(:,2),G_sumIJV(:,3),"<<
    G_sum.rows()<<","<<G_sum.cols()<<");"<<endl;
#endif

  // Get covariance scatter matrix, when applied collects the covariance matrices
  // used to fit rotations to during optimization
  SparseMatrix<double> CSM;
  //printf("covariance_scatter_matrix()\n");
  covariance_scatter_matrix(V,F,data.energy,CSM);
#ifdef EXTREME_VERBOSE
  cout<<"CSMIJV=["<<endl;print_ijv(CSM,1);cout<<endl<<"];"<<
    endl<<"CSM=sparse(CSMIJV(:,1),CSMIJV(:,2),CSMIJV(:,3),"<<
    CSM.rows()<<","<<CSM.cols()<<");"<<endl;
#endif
  

  // Build the covariance matrix "constructor". This is a set of *scatter*
  // matrices that when multiplied on the right by column of the transformation
  // matrix entries (the degrees of freedom) L, we get a stack of dim by 1
  // covariance matrix column, with a column in the stack for each rotation
  // *group*. The output is a list of matrices because we construct each column
  // in the stack of covariance matrices with an independent matrix-vector
  // multiplication.
//.........这里部分代码省略.........
开发者ID:JianpingCAI,项目名称:libigl,代码行数:101,代码来源:arap_dof.cpp


注:本文中的eigen::MatrixXi::col方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。