当前位置: 首页>>代码示例>>C++>>正文


C++ Matrix::size方法代码示例

本文整理汇总了C++中eigen::Matrix::size方法的典型用法代码示例。如果您正苦于以下问题:C++ Matrix::size方法的具体用法?C++ Matrix::size怎么用?C++ Matrix::size使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在eigen::Matrix的用法示例。


在下文中一共展示了Matrix::size方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: y

std::vector<double>
unit_vector_grad(Eigen::Matrix<double,Eigen::Dynamic,1>& y_dbl,
                 int k) {
  using Eigen::Matrix;
  using Eigen::Dynamic;
  using stan::math::var;
  Matrix<var,Dynamic,1> y(y_dbl.size());
  for (int i = 0; i < y.size(); ++i)
    y(i) = y_dbl(i);

  std::vector<var> x(y.size());
  for (size_t i = 0; i < x.size(); ++i)
    x[i] = y(i);

  var fx_k = stan::math::unit_vector_constrain(y)[k];
  std::vector<double> grad(y.size());
  fx_k.grad(x,grad);
  return grad;
}
开发者ID:stan-dev,项目名称:math,代码行数:19,代码来源:unit_vector_constrain_test.cpp

示例2: alpha

// compute grad using templated definition in math
// to check custom derivatives
std::vector<double>
softmax_grad(Eigen::Matrix<double,Eigen::Dynamic,1>& alpha_dbl,
             int k) {
  using Eigen::Matrix;
  using Eigen::Dynamic;
  using stan::agrad::var;
  Matrix<var,Dynamic,1> alpha(alpha_dbl.size());
  for (int i = 0; i < alpha.size(); ++i)
    alpha(i) = alpha_dbl(i);

  std::vector<var> x(alpha.size());
  for (size_t i = 0; i < x.size(); ++i)
    x[i] = alpha(i);
  
  var fx_k = stan::math::softmax(alpha)[k];
  std::vector<double> grad(alpha.size());
  fx_k.grad(x,grad);
  return grad;
}
开发者ID:javaosos,项目名称:stan,代码行数:21,代码来源:softmax_test.cpp

示例3: log_determinant_spd

    inline var log_determinant_spd(const Eigen::Matrix<var,R,C>& m) {
      using stan::math::domain_error;
      using Eigen::Matrix;

      math::check_square("log_determinant_spd", "m", m);

      Matrix<double,R,C> m_d(m.rows(),m.cols());
      for (int i = 0; i < m.size(); ++i)
        m_d(i) = m(i).val();

      Eigen::LDLT<Matrix<double,R,C> > ldlt(m_d);
      if (ldlt.info() != Eigen::Success) {
        double y = 0;
        domain_error("log_determinant_spd",
                "matrix argument", y,
                "failed LDLT factorization");
      }

       // compute the inverse of A (needed for the derivative)
      m_d.setIdentity(m.rows(), m.cols());
      ldlt.solveInPlace(m_d);
          
      if (ldlt.isNegative() || (ldlt.vectorD().array() <= 1e-16).any()) {
        double y = 0;
        domain_error("log_determinant_spd",
                "matrix argument", y,
                "matrix is negative definite");
      }

      double val = ldlt.vectorD().array().log().sum();

      if (!boost::math::isfinite(val)) {
        double y = 0;
        domain_error("log_determinant_spd",
                "matrix argument", y,
                "log determininant is infinite");
      }

      vari** operands = ChainableStack::memalloc_
        .alloc_array<vari*>(m.size());
      for (int i = 0; i < m.size(); ++i)
        operands[i] = m(i).vi_;

      double* gradients = ChainableStack::memalloc_
        .alloc_array<double>(m.size());
      for (int i = 0; i < m.size(); ++i)
        gradients[i] = m_d(i);

      return var(new precomputed_gradients_vari(val,m.size(),operands,gradients));
    }
开发者ID:javaosos,项目名称:stan,代码行数:50,代码来源:log_determinant_spd.hpp

示例4: stick_len

    Eigen::Matrix<T, Eigen::Dynamic, 1>
    simplex_free(const Eigen::Matrix<T, Eigen::Dynamic, 1>& x) {
      using Eigen::Dynamic;
      using Eigen::Matrix;
      using std::log;

      typedef typename index_type<Matrix<T, Dynamic, 1> >::type size_type;

      check_simplex("stan::math::simplex_free",
                    "Simplex variable", x);
      int Km1 = x.size() - 1;
      Eigen::Matrix<T, Eigen::Dynamic, 1> y(Km1);
      T stick_len(x(Km1));
      for (size_type k = Km1; --k >= 0; ) {
        stick_len += x(k);
        T z_k(x(k) / stick_len);
        y(k) = logit(z_k) + log(Km1 - k);
        // note: log(Km1 - k) = logit(1.0 / (Km1 + 1 - k));
      }
      return y;
    }
开发者ID:stan-dev,项目名称:math,代码行数:21,代码来源:simplex_free.hpp

示例5: x

    Eigen::Matrix<T, Eigen::Dynamic, 1>
    positive_ordered_free(const Eigen::Matrix<T, Eigen::Dynamic, 1>& y) {
      using Eigen::Matrix;
      using Eigen::Dynamic;
      using stan::math::index_type;

      typedef typename index_type<Matrix<T, Dynamic, 1> >::type size_type;

      stan::math::check_positive_ordered("stan::math::positive_ordered_free",
                                                   "Positive ordered variable",
                                                   y);

      size_type k = y.size();
      Matrix<T, Dynamic, 1> x(k);
      if (k == 0)
        return x;
      x[0] = log(y[0]);
      for (size_type i = 1; i < k; ++i)
        x[i] = log(y[i] - y[i-1]);
      return x;
    }
开发者ID:alyst,项目名称:math,代码行数:21,代码来源:positive_ordered_free.hpp

示例6: print_ijv

IGL_INLINE void igl::print_ijv(
  const Eigen::SparseMatrix<T>& X,
  const int offset)
{
  Eigen::Matrix<int,Eigen::Dynamic,1> I;
  Eigen::Matrix<int,Eigen::Dynamic,1> J;
  Eigen::Matrix<T,Eigen::Dynamic,1> V;
  igl::find(X,I,J,V);
  // Concatenate I,J,V
  Eigen::Matrix<T,Eigen::Dynamic,Eigen::Dynamic> IJV(I.size(),3);
  IJV.col(0) = I.cast<T>();
  IJV.col(1) = J.cast<T>();
  IJV.col(2) = V;
  // Offset
  if(offset != 0)
  {
    IJV.col(0).array() += offset;
    IJV.col(1).array() += offset;
  }
  std::cout<<IJV;
}
开发者ID:azer89,项目名称:BBW,代码行数:21,代码来源:print_ijv.cpp

示例7: p

		void
		MitsubishiH7::setMotorPulse(const ::Eigen::Matrix< ::std::int32_t, ::Eigen::Dynamic, 1>& p)
		{
			assert(p.size() >= this->getDof());
			
			this->out.dat2.pls.p1 = 0;
			this->out.dat2.pls.p2 = 0;
			this->out.dat2.pls.p3 = 0;
			this->out.dat2.pls.p4 = 0;
			this->out.dat2.pls.p5 = 0;
			this->out.dat2.pls.p6 = 0;
			this->out.dat2.pls.p7 = 0;
			this->out.dat2.pls.p8 = 0;
			
			switch (this->getDof())
			{
			case 8:
				this->out.dat2.pls.p8 = p(7);
			case 7:
				this->out.dat2.pls.p7 = p(6);
			case 6:
				this->out.dat2.pls.p6 = p(5);
			case 5:
				this->out.dat2.pls.p5 = p(4);
			case 4:
				this->out.dat2.pls.p4 = p(3);
			case 3:
				this->out.dat2.pls.p3 = p(2);
			case 2:
				this->out.dat2.pls.p2 = p(1);
			case 1:
				this->out.dat2.pls.p1 = p(0);
			default:
				break;
			}
			
			this->out.command = MXT_COMMAND_MOVE;
			this->out.sendType = MXT_TYPE_PULSE;
		}
开发者ID:roboticslibrary,项目名称:rl,代码行数:39,代码来源:MitsubishiH7.cpp

示例8: f

 void
 grad_hessian(const F& f,
              const Eigen::Matrix<double, Eigen::Dynamic, 1>& x,
              double& fx,
              Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>& H,
              std::vector<Eigen::Matrix<double,
              Eigen::Dynamic, Eigen::Dynamic> >&
              grad_H) {
   using Eigen::Matrix;
   using Eigen::Dynamic;
   fx = f(x);
   int d = x.size();
   H.resize(d, d);
   grad_H.resize(d, Matrix<double, Dynamic, Dynamic>(d, d));
   try {
     for (int i = 0; i < d; ++i) {
       for (int j = i; j < d; ++j) {
         start_nested();
         Matrix<fvar<fvar<var> >, Dynamic, 1> x_ffvar(d);
         for (int k = 0; k < d; ++k)
           x_ffvar(k) = fvar<fvar<var> >(fvar<var>(x(k), i == k),
                                         fvar<var>(j == k, 0));
         fvar<fvar<var> > fx_ffvar = f(x_ffvar);
         H(i, j) = fx_ffvar.d_.d_.val();
         H(j, i) = H(i, j);
         grad(fx_ffvar.d_.d_.vi_);
         for (int k = 0; k < d; ++k) {
           grad_H[i](j, k) = x_ffvar(k).val_.val_.adj();
           grad_H[j](i, k) = grad_H[i](j, k);
         }
         recover_memory_nested();
       }
     }
   } catch (const std::exception& e) {
     recover_memory_nested();
     throw;
   }
 }
开发者ID:stan-dev,项目名称:math,代码行数:38,代码来源:grad_hessian.hpp

示例9: result

 inline Eigen::Matrix <
   typename boost::math::tools::promote_args<T1, T2>::type,
   Eigen::Dynamic, Eigen::Dynamic>
 quad_form_diag(const Eigen::Matrix<T1, Eigen::Dynamic, Eigen::Dynamic>& mat,
                const Eigen::Matrix<T2, R, C>& vec) {
   using boost::math::tools::promote_args;
   check_vector("quad_form_diag", "vec", vec);
   check_square("quad_form_diag", "mat", mat);
   int size = vec.size();
   check_equal("quad_form_diag", "matrix size", mat.rows(),
               size);
   Eigen::Matrix<typename promote_args<T1, T2>::type,
                 Eigen::Dynamic, Eigen::Dynamic> result(size, size);
   for (int i = 0; i < size; i++) {
     result(i, i) = vec(i)*vec(i)*mat(i, i);
     for (int j = i+1; j < size; ++j) {
       typename promote_args<T1, T2>::type temp = vec(i)*vec(j);
       result(j, i) = temp*mat(j, i);
       result(i, j) = temp*mat(i, j);
     }
   }
   return result;
 }
开发者ID:stan-dev,项目名称:math,代码行数:23,代码来源:quad_form_diag.hpp

示例10: test_sort_indices_desc3

void test_sort_indices_desc3(Eigen::Matrix<T,R,C> val) {

  typedef Eigen::Matrix<fvar<fvar<double> >,R,C> AVEC;
  
  const size_t size = val.size();

  AVEC x(size);
  for(size_t i=0U; i<size; i++)
    x.data()[i] = fvar<fvar<double> >(val[i]);
  
  std::vector<int> val_sorted = sort_indices_desc(val);
  std::vector<int> x_sorted = sort_indices_desc(x);
  
  for(size_t i=0U; i<size; i++)
    EXPECT_EQ(val_sorted.data()[i],x_sorted.data()[i]);

  for(size_t i=0U; i<size; i++)
    for(size_t j=0U; j<size; j++)
      if(val_sorted.data()[i] == val.data()[j])
        EXPECT_EQ(x_sorted.data()[i],x.data()[j]);
      else
        EXPECT_FALSE(x_sorted.data()[i]==x.data()[j]);
}
开发者ID:aseyboldt,项目名称:math,代码行数:23,代码来源:sort_indices_test.cpp

示例11: check_simplex

    bool check_simplex(const char* function,
                       const char* name,
                       const Eigen::Matrix<T_prob, Eigen::Dynamic, 1>& theta) {
      using Eigen::Dynamic;
      using Eigen::Matrix;
      using stan::math::index_type;

      typedef typename index_type<Matrix<T_prob, Dynamic, 1> >::type size_t;

      check_nonzero_size(function, name, theta);
      if (!(fabs(1.0 - theta.sum()) <= CONSTRAINT_TOLERANCE)) {
        std::stringstream msg;
        T_prob sum = theta.sum();
        msg << "is not a valid simplex.";
        msg.precision(10);
        msg << " sum(" << name << ") = " << sum
            << ", but should be ";
        std::string msg_str(msg.str());
        domain_error(function, name, 1.0,
                     msg_str.c_str());
        return false;
      }
      for (size_t n = 0; n < theta.size(); n++) {
        if (!(theta[n] >= 0)) {
          std::ostringstream msg;
          msg << "is not a valid simplex. "
              << name << "[" << n + stan::error_index::value << "]"
              << " = ";
          std::string msg_str(msg.str());
          domain_error(function, name, theta[n],
                       msg_str.c_str(),
                       ", but should be greater than or equal to 0");
          return false;
        }
      }
      return true;
    }
开发者ID:alyst,项目名称:math,代码行数:37,代码来源:check_simplex.hpp

示例12: test_sort_indices_desc

void test_sort_indices_desc(Eigen::Matrix<T,R,C> val) {
  using stan::math::sort_indices_desc;

  typedef Eigen::Matrix<AVAR,R,C> AVEC;
  
  const size_t size = val.size();

  AVEC x(size);
  for(size_t i=0U; i<size; i++)
    x.data()[i] = AVAR(val[i]);
  
  std::vector<int> val_sorted = sort_indices_desc(val);
  std::vector<int> x_sorted = sort_indices_desc(x);
  
  for(size_t i=0U; i<size; i++)
    EXPECT_EQ(val_sorted.data()[i],x_sorted.data()[i]);

  for(size_t i=0U; i<size; i++)
    for(size_t j=0U; j<size; j++)
      if(val_sorted.data()[i] == val.data()[j])
        EXPECT_EQ(x_sorted.data()[i],x.data()[j]);
      else
        EXPECT_FALSE(x_sorted.data()[i]==x.data()[j]);
}
开发者ID:stan-dev,项目名称:math,代码行数:24,代码来源:sort_indices_test.cpp

示例13: sum

    typename boost::math::tools::promote_args<T_prob>::type
    categorical_logit_log(const std::vector<int>& ns, 
                          const Eigen::Matrix<T_prob,Eigen::Dynamic,1>& beta) {
      static const char* function = "stan::prob::categorical_logit_log(%1%)";

      using stan::math::check_bounded;
      using stan::math::check_finite;
      using stan::math::log_softmax;
      using stan::math::sum;

      double lp = 0.0;
      for (size_t k = 0; k < ns.size(); ++k)
        if (!check_bounded(function, ns[k], 1, beta.size(),
                           "categorical outcome out of support",
                           &lp))
          return lp;

      if (!check_finite(function, beta, "log odds parameter", &lp))
        return lp;

      if (!include_summand<propto,T_prob>::value)
        return 0.0;
      
      if (ns.size() == 0)
        return 0.0;
        
      Eigen::Matrix<T_prob,Eigen::Dynamic,1> log_softmax_beta
        = log_softmax(beta);

      // FIXME:  replace with more efficient sum()
      Eigen::Matrix<typename boost::math::tools::promote_args<T_prob>::type,
                    Eigen::Dynamic,1> results(ns.size());
      for (size_t i = 0; i < ns.size(); ++i)
        results[i] = log_softmax_beta(ns[i] - 1);
      return sum(results);
    }
开发者ID:HerraHuu,项目名称:stan,代码行数:36,代码来源:categorical_logit.hpp

示例14: beta

    typename boost::math::tools::promote_args<T_prob>::type
    categorical_logit_log(int n, 
                          const Eigen::Matrix<T_prob,Eigen::Dynamic,1>& beta) {
      static const char* function = "stan::prob::categorical_logit_log(%1%)";

      using stan::math::check_bounded;
      using stan::math::check_finite;
      using stan::math::log_sum_exp;

      double lp = 0.0;
      if (!check_bounded(function, n, 1, beta.size(),
                         "categorical outcome out of support",
                         &lp))
        return lp;

      if (!check_finite(function, beta, "log odds parameter", &lp))
        return lp;

      if (!include_summand<propto,T_prob>::value)
        return 0.0;
        
      // FIXME:  wasteful vs. creating term (n-1) if not vectorized
      return beta(n-1) - log_sum_exp(beta); // == log_softmax(beta)(n-1);
    }
开发者ID:HerraHuu,项目名称:stan,代码行数:24,代码来源:categorical_logit.hpp

示例15: softmax

    inline
    Eigen::Matrix<fvar<T>, Eigen::Dynamic, 1>
    softmax(const Eigen::Matrix<fvar<T>, Eigen::Dynamic, 1>& alpha) {
      using stan::math::softmax;
      using Eigen::Matrix;
      using Eigen::Dynamic;

      Matrix<T, Dynamic, 1> alpha_t(alpha.size());
      for (int k = 0; k < alpha.size(); ++k)
        alpha_t(k) = alpha(k).val_;

      Matrix<T, Dynamic, 1> softmax_alpha_t = softmax(alpha_t);

      Matrix<fvar<T>, Dynamic, 1> softmax_alpha(alpha.size());
      for (int k = 0; k < alpha.size(); ++k) {
        softmax_alpha(k).val_ = softmax_alpha_t(k);
        softmax_alpha(k).d_ = 0;
      }

      // for each input position
      for (int m = 0; m < alpha.size(); ++m) {
        // for each output position
        T negative_alpha_m_d_times_softmax_alpha_t_m
          = - alpha(m).d_ * softmax_alpha_t(m);
        for (int k = 0; k < alpha.size(); ++k) {
          // chain from input to output
          if (m == k) {
            softmax_alpha(k).d_
              += softmax_alpha_t(k)
              * (alpha(m).d_
                 + negative_alpha_m_d_times_softmax_alpha_t_m);
          } else {
            softmax_alpha(k).d_
              += negative_alpha_m_d_times_softmax_alpha_t_m
              * softmax_alpha_t(k);
          }
        }
      }

      return softmax_alpha;
    }
开发者ID:alyst,项目名称:math,代码行数:41,代码来源:softmax.hpp


注:本文中的eigen::Matrix::size方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。