当前位置: 首页>>代码示例>>C++>>正文


C++ Workspace2D_sptr::setTitle方法代码示例

本文整理汇总了C++中dataobjects::Workspace2D_sptr::setTitle方法的典型用法代码示例。如果您正苦于以下问题:C++ Workspace2D_sptr::setTitle方法的具体用法?C++ Workspace2D_sptr::setTitle怎么用?C++ Workspace2D_sptr::setTitle使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在dataobjects::Workspace2D_sptr的用法示例。


在下文中一共展示了Workspace2D_sptr::setTitle方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: loadFQ

/**
 * Create workspace to store the structure factor.
 * First spectrum is the real part, second spectrum is the imaginary part
 * X values are the modulus of the Q-vectors
 * @param h5file file identifier
 * @param gws pointer to WorkspaceGroup being filled
 * @param setName string name of dataset
 * @param qvmod vector of Q-vectors' moduli
 * @param sorting_indexes permutation of qvmod indexes to render it in increasing order of momemtum transfer
 */
void LoadSassena::loadFQ(const hid_t& h5file, API::WorkspaceGroup_sptr gws, const std::string setName, const MantidVec &qvmod, const std::vector<int> &sorting_indexes)
{
  const std::string gwsName = this->getPropertyValue("OutputWorkspace");
  int nq = static_cast<int>( qvmod.size() ); //number of q-vectors

  DataObjects::Workspace2D_sptr ws = boost::dynamic_pointer_cast<DataObjects::Workspace2D>(API::WorkspaceFactory::Instance().create("Workspace2D", 2, nq, nq));
  const std::string wsName = gwsName + std::string("_") + setName;
  ws->setTitle(wsName);

  double* buf = new double[nq*2];
  this->dataSetDouble(h5file,setName,buf);
  MantidVec& re = ws->dataY(0); // store the real part
  ws->dataX(0) = qvmod;  //X-axis values are the modulus of the q vector
  MantidVec& im = ws->dataY(1); // store the imaginary part
  ws->dataX(1) = qvmod;
  double *curr = buf;
  for(int iq=0; iq<nq; iq++){
    const int index=sorting_indexes[iq];
    re[index]=curr[0];
    im[index]=curr[1];
    curr+=2;
  }
  delete[] buf;

  // Set the Units
  ws->getAxis(0)->unit() = Kernel::UnitFactory::Instance().create("MomentumTransfer");

  this->registerWorkspace(gws,wsName,ws, "X-axis: Q-vector modulus; Y-axis: intermediate structure factor");
}
开发者ID:AlistairMills,项目名称:mantid,代码行数:39,代码来源:LoadSassena.cpp

示例2: loadQvectors

/**
 * load vectors onto a Workspace2D with 3 bins (the three components of the
 * vectors)
 * dataX for the origin of the vector (assumed (0,0,0) )
 * dataY for the tip of the vector
 * dataE is assumed (0,0,0), no errors
 * @param h5file file identifier
 * @param gws pointer to WorkspaceGroup being filled
 * @param sorting_indexes permutation of qvmod indexes to render it in
 * increasing order of momemtum transfer
 */
const MantidVec LoadSassena::loadQvectors(const hid_t &h5file,
                                          API::WorkspaceGroup_sptr gws,
                                          std::vector<int> &sorting_indexes) {

  const std::string gwsName = this->getPropertyValue("OutputWorkspace");
  const std::string setName("qvectors");

  hsize_t dims[3];
  if (dataSetInfo(h5file, setName, dims) < 0) {
    throw Kernel::Exception::FileError(
        "Unable to read " + setName + " dataset info:", m_filename);
  }
  int nq = static_cast<int>(dims[0]); // number of q-vectors
  double *buf = new double[nq * 3];
  this->dataSetDouble(h5file, "qvectors", buf);

  MantidVec qvmod; // store the modulus of the vector
  double *curr = buf;
  for (int iq = 0; iq < nq; iq++) {
    qvmod.push_back(
        sqrt(curr[0] * curr[0] + curr[1] * curr[1] + curr[2] * curr[2]));
    curr += 3;
  }

  if (getProperty("SortByQVectors")) {
    std::vector<mypair> qvmodpair;
    for (int iq = 0; iq < nq; iq++)
      qvmodpair.push_back(mypair(qvmod[iq], iq));
    std::sort(qvmodpair.begin(), qvmodpair.end(), compare);
    for (int iq = 0; iq < nq; iq++)
      sorting_indexes.push_back(qvmodpair[iq].second);
    std::sort(qvmod.begin(), qvmod.end());
  } else
    for (int iq = 0; iq < nq; iq++)
      sorting_indexes.push_back(iq);

  DataObjects::Workspace2D_sptr ws =
      boost::dynamic_pointer_cast<DataObjects::Workspace2D>(
          API::WorkspaceFactory::Instance().create("Workspace2D", nq, 3, 3));
  std::string wsName = gwsName + std::string("_") + setName;
  ws->setTitle(wsName);

  for (int iq = 0; iq < nq; iq++) {
    MantidVec &Y = ws->dataY(iq);
    const int index = sorting_indexes[iq];
    curr = buf + 3 * index;
    Y.assign(curr, curr + 3);
  }
  delete[] buf;

  ws->getAxis(0)->unit() = Kernel::UnitFactory::Instance().create(
      "MomentumTransfer"); // Set the Units

  this->registerWorkspace(
      gws, wsName, ws, "X-axis: origin of Q-vectors; Y-axis: tip of Q-vectors");
  return qvmod;
}
开发者ID:mkoennecke,项目名称:mantid,代码行数:68,代码来源:LoadSassena.cpp

示例3: period_index


//.........这里部分代码省略.........
          Y.assign(mondata(),mondata() + m_numberOfChannels);
          MantidVec& E = local_workspace->dataE(hist_index);
          std::transform(Y.begin(), Y.end(), E.begin(), dblSqrt);
          local_workspace->getAxis(1)->spectraNo(hist_index) = static_cast<specid_t>(it->first);

          NXFloat timeBins = monitor.openNXFloat("time_of_flight");
          timeBins.load();
          local_workspace->dataX(hist_index).assign(timeBins(),timeBins() + timeBins.dim0());
          hist_index++;
        }

        if (first_monitor_spectrum > 1)
        {
          hist_index = 0;
        }
      }
      
      if( m_have_detector )
      {
        NXData nxdata = entry.openNXData("detector_1");
        NXDataSetTyped<int> data = nxdata.openIntData();
        data.open();
        //Start with thelist members that are lower than the required spectrum
        const int * const spec_begin = m_spec.get();
        std::vector<int64_t>::iterator min_end = m_spec_list.end();
        if( !m_spec_list.empty() )
        {
          // If we have a list, by now it is ordered so first pull in the range below the starting block range
          // Note the reverse iteration as we want the last one
          if( m_range_supplied )
          {
            min_end = std::find_if(m_spec_list.begin(), m_spec_list.end(), std::bind2nd(std::greater<int>(), m_spec_min));
          }

          for( std::vector<int64_t>::iterator itr = m_spec_list.begin(); itr < min_end; ++itr )
          {
            // Load each
            int64_t spectra_no = (*itr);
            // For this to work correctly, we assume that the spectrum list increases monotonically
            int64_t filestart = std::lower_bound(spec_begin,m_spec_end,spectra_no) - spec_begin;
            m_progress->report("Loading data");
            loadBlock(data, static_cast<int64_t>(1), period_index, filestart, hist_index, spectra_no, local_workspace);
          }
        }    

        if( m_range_supplied )
        {
          // When reading in blocks we need to be careful that the range is exactly divisible by the blocksize
          // and if not have an extra read of the left overs
          const int64_t blocksize = 8;
          const int64_t rangesize = (m_spec_max - m_spec_min + 1) - m_monitors.size();
          const int64_t fullblocks = rangesize / blocksize;
          int64_t read_stop = 0;
          int64_t spectra_no = m_spec_min;
          if (first_monitor_spectrum == 1)
          {// this if crudely checks whether the monitors are at the begining or end of the spectra
            spectra_no += static_cast<int>(m_monitors.size());
          }
          // For this to work correctly, we assume that the spectrum list increases monotonically
          int64_t filestart = std::lower_bound(spec_begin,m_spec_end,spectra_no) - spec_begin;
          if( fullblocks > 0 )
          {
            read_stop = (fullblocks * blocksize);// + m_monitors.size(); //RNT: I think monitors are excluded from the data
            //for( ; hist_index < read_stop; )
            for(int64_t i = 0; i < fullblocks; ++i)
            {
              loadBlock(data, blocksize, period_index, filestart, hist_index, spectra_no, local_workspace);
              filestart += blocksize;
            }
          }
          int64_t finalblock = rangesize - (fullblocks * blocksize);
          if( finalblock > 0 )
          {
            loadBlock(data, finalblock, period_index, filestart, hist_index, spectra_no,  local_workspace);
          }
        }

        //Load in the last of the list indices
        for( std::vector<int64_t>::iterator itr = min_end; itr < m_spec_list.end(); ++itr )
        {
          // Load each
          int64_t spectra_no = (*itr);
          // For this to work correctly, we assume that the spectrum list increases monotonically
          int64_t filestart = std::lower_bound(spec_begin,m_spec_end,spectra_no) - spec_begin;
          loadBlock(data, 1, period_index, filestart, hist_index, spectra_no, local_workspace);
        }
      }

      try
      {
        const std::string title = entry.getString("title");
        local_workspace->setTitle(title);
        // write the title into the log file (run object)
        local_workspace->mutableRun().addProperty("run_title", title, true);
      }
      catch (std::runtime_error &)
      {
        g_log.debug() << "No title was found in the input file, " << getPropertyValue("Filename") << std::endl;
      }
    }
开发者ID:,项目名称:,代码行数:101,代码来源:

示例4: loadFQT

/**
 * Create one workspace to hold the real part and another to hold the imaginary
* part.
 * We symmetrize the structure factor to negative times
 * Y-values are structure factor for each Q-value
 * X-values are time bins
 * @param h5file file identifier
 * @param gws pointer to WorkspaceGroup being filled
 * @param setName string name of dataset
 * @param qvmod vector of Q-vectors' moduli
* @param sorting_indexes permutation of qvmod indexes to render it in increasing
* order of momemtum transfer
*/
void LoadSassena::loadFQT(const hid_t &h5file, API::WorkspaceGroup_sptr gws,
                          const std::string setName, const MantidVec &qvmod,
                          const std::vector<int> &sorting_indexes) {
  const std::string gwsName = this->getPropertyValue("OutputWorkspace");
  int nq = static_cast<int>(qvmod.size()); // number of q-vectors
  const double dt =
      getProperty("TimeUnit"); // time unit increment, in picoseconds;
  hsize_t dims[3];
  if (dataSetInfo(h5file, setName, dims) < 0) {
    throw Kernel::Exception::FileError(
        "Unable to read " + setName + " dataset info:", m_filename);
  }
  int nnt = static_cast<int>(dims[1]); // number of non-negative time points
  int nt = 2 * nnt - 1;                // number of time points
  int origin = nnt - 1;
  double *buf = new double[nq * nnt * 2];
  this->dataSetDouble(h5file, setName, buf);

  DataObjects::Workspace2D_sptr wsRe =
      boost::dynamic_pointer_cast<DataObjects::Workspace2D>(
          API::WorkspaceFactory::Instance().create("Workspace2D", nq, nt, nt));
  const std::string wsReName =
      gwsName + std::string("_") + setName + std::string(".Re");
  wsRe->setTitle(wsReName);

  DataObjects::Workspace2D_sptr wsIm =
      boost::dynamic_pointer_cast<DataObjects::Workspace2D>(
          API::WorkspaceFactory::Instance().create("Workspace2D", nq, nt, nt));
  const std::string wsImName =
      gwsName + std::string("_") + setName + std::string(".Im");
  wsIm->setTitle(wsImName);

  for (int iq = 0; iq < nq; iq++) {
    MantidVec &reX = wsRe->dataX(iq);
    MantidVec &imX = wsIm->dataX(iq);
    MantidVec &reY = wsRe->dataY(iq);
    MantidVec &imY = wsIm->dataY(iq);
    const int index = sorting_indexes[iq];
    double *curr = buf + index * nnt * 2;
    for (int it = 0; it < nnt; it++) {
      reX[origin + it] = it * dt; // time point for the real part
      reY[origin + it] =
          *curr; // real part of the intermediate structure factor
      reX[origin - it] = -it * dt; // symmetric negative time
      reY[origin - it] = *curr;    // symmetric value for the negative time
      curr++;
      imX[origin + it] = it * dt;
      imY[origin + it] = *curr;
      imX[origin - it] = -it * dt;
      imY[origin - it] = -(*curr); // antisymmetric value for negative times
      curr++;
    }
  }
  delete[] buf;

  // Set the Time unit for the X-axis
  wsRe->getAxis(0)->unit() = Kernel::UnitFactory::Instance().create("Label");
  auto unitPtr = boost::dynamic_pointer_cast<Kernel::Units::Label>(
      wsRe->getAxis(0)->unit());
  unitPtr->setLabel("Time", "picoseconds");

  wsIm->getAxis(0)->unit() = Kernel::UnitFactory::Instance().create("Label");
  unitPtr = boost::dynamic_pointer_cast<Kernel::Units::Label>(
      wsIm->getAxis(0)->unit());
  unitPtr->setLabel("Time", "picoseconds");

  // Create a numeric axis to replace the default vertical one
  API::Axis *const verticalAxisRe = new API::NumericAxis(nq);
  API::Axis *const verticalAxisIm = new API::NumericAxis(nq);

  wsRe->replaceAxis(1, verticalAxisRe);
  wsIm->replaceAxis(1, verticalAxisIm);

  // Now set the axis values
  for (int i = 0; i < nq; ++i) {
    verticalAxisRe->setValue(i, qvmod[i]);
    verticalAxisIm->setValue(i, qvmod[i]);
  }

  // Set the axis units
  verticalAxisRe->unit() =
      Kernel::UnitFactory::Instance().create("MomentumTransfer");
  verticalAxisRe->title() = "|Q|";
  verticalAxisIm->unit() =
      Kernel::UnitFactory::Instance().create("MomentumTransfer");
  verticalAxisIm->title() = "|Q|";

//.........这里部分代码省略.........
开发者ID:mkoennecke,项目名称:mantid,代码行数:101,代码来源:LoadSassena.cpp

示例5: exec

    /** Executes the algorithm. Reading in the file and creating and populating
     *  the output workspace
     *
     *  @throw Exception::FileError If the RAW file cannot be found/opened
     *  @throw std::invalid_argument If the optional properties are set to invalid values
     */
    void LoadRaw::exec()
    {
      // Retrieve the filename from the properties
      m_filename = getPropertyValue("Filename");

      LoadRawHelper *helper = new LoadRawHelper;
      FILE* file = helper->openRawFile(m_filename);
      ISISRAW iraw;
      iraw.ioRAW(file, true);

      std::string title(iraw.r_title, 80);
      g_log.information("**** Run title: "+title+ "***");
      
      // Read in the number of spectra in the RAW file
      m_numberOfSpectra = iraw.t_nsp1;
      // Read the number of periods in this file
      m_numberOfPeriods = iraw.t_nper;
      // Need to extract the user-defined output workspace name
      Property *ws = getProperty("OutputWorkspace");
      std::string localWSName = ws->value();

      // Call private method to validate the optional parameters, if set
      checkOptionalProperties();

      // Read the number of time channels (i.e. bins) from the RAW file
      const int channelsPerSpectrum = iraw.t_ntc1;
      // Read in the time bin boundaries
      const int lengthIn = channelsPerSpectrum + 1;
      float* timeChannels = new float[lengthIn];
      iraw.getTimeChannels(timeChannels, lengthIn);
      // Put the read in array into a vector (inside a shared pointer)
      boost::shared_ptr<MantidVec> timeChannelsVec
                          (new MantidVec(timeChannels, timeChannels + lengthIn));
      // Create an array to hold the read-in data
      int* spectrum = new int[lengthIn];

      // Calculate the size of a workspace, given its number of periods & spectra to read
      specid_t total_specs;
      if( m_interval || m_list)
      {
        total_specs = static_cast<specid_t>(m_spec_list.size());
        if (m_interval)
        {
          total_specs += (m_spec_max-m_spec_min+1);
          m_spec_max += 1;
        }
      }
      else
      {
        total_specs = m_numberOfSpectra;
        // In this case want all the spectra, but zeroth spectrum is garbage so go from 1 to NSP1
        m_spec_min = 1;
        m_spec_max = m_numberOfSpectra + 1;
      }

      double histTotal = static_cast<double>(total_specs * m_numberOfPeriods);
      int32_t histCurrent = -1;

      // Create the 2D workspace for the output
      DataObjects::Workspace2D_sptr localWorkspace = boost::dynamic_pointer_cast<DataObjects::Workspace2D>
               (WorkspaceFactory::Instance().create("Workspace2D",total_specs,lengthIn,lengthIn-1));
      localWorkspace->getAxis(0)->unit() = UnitFactory::Instance().create("TOF");
      localWorkspace->setTitle(title);
      // Run parameters
      helper->loadRunParameters(localWorkspace, &iraw);
      delete helper;
      helper = NULL;


      // Loop over the number of periods in the raw file, putting each period in a separate workspace
      for (int period = 0; period < m_numberOfPeriods; ++period) {

        if ( period > 0 ) localWorkspace =  boost::dynamic_pointer_cast<DataObjects::Workspace2D>
                                              (WorkspaceFactory::Instance().create(localWorkspace));

        specid_t counter = 0;
        for (specid_t i = m_spec_min; i < m_spec_max; ++i)
        {
          // Shift the histogram to read if we're not in the first period
          int32_t histToRead = i + period*total_specs;
          loadData(timeChannelsVec,counter,histToRead,iraw,lengthIn,spectrum,localWorkspace );
          counter++;
          if (++histCurrent % 100 == 0) progress(static_cast<double>(histCurrent)/histTotal);
          interruption_point();
        }
        // Read in the spectra in the optional list parameter, if set
        if (m_list)
        {
          for(size_t i=0; i < m_spec_list.size(); ++i)
          {
            loadData(timeChannelsVec,counter,m_spec_list[i],iraw,lengthIn,spectrum, localWorkspace );
            counter++;
            if (++histCurrent % 100 == 0) progress(static_cast<double>(histCurrent)/histTotal);
            interruption_point();
//.........这里部分代码省略.........
开发者ID:trnielsen,项目名称:mantid,代码行数:101,代码来源:LoadRaw.cpp

示例6: period_index

/**
* Load a given period into the workspace
* @param period :: The period number to load (starting from 1)
* @param entry :: The opened root entry node for accessing the monitor and data
* nodes
* @param local_workspace :: The workspace to place the data in
* @param update_spectra2det_mapping :: reset spectra-detector map to the one
* calculated earlier. (Warning! -- this map has to be calculated correctly!)
*/
void
LoadISISNexus2::loadPeriodData(int64_t period, NXEntry &entry,
                               DataObjects::Workspace2D_sptr &local_workspace,
                               bool update_spectra2det_mapping) {
  int64_t hist_index = 0;
  int64_t period_index(period - 1);
  // int64_t first_monitor_spectrum = 0;

  for (auto block = m_spectraBlocks.begin(); block != m_spectraBlocks.end();
       ++block) {
    if (block->isMonitor) {
      NXData monitor = entry.openNXData(block->monName);
      NXInt mondata = monitor.openIntData();
      m_progress->report("Loading monitor");
      mondata.load(1, static_cast<int>(period - 1)); // TODO this is just wrong
      MantidVec &Y = local_workspace->dataY(hist_index);
      Y.assign(mondata(), mondata() + m_monBlockInfo.numberOfChannels);
      MantidVec &E = local_workspace->dataE(hist_index);
      std::transform(Y.begin(), Y.end(), E.begin(), dblSqrt);

      if (update_spectra2det_mapping) {
        // local_workspace->getAxis(1)->setValue(hist_index,
        // static_cast<specid_t>(it->first));
        auto spec = local_workspace->getSpectrum(hist_index);
        specid_t specID = m_specInd2specNum_map.at(hist_index);
        spec->setDetectorIDs(
            m_spec2det_map.getDetectorIDsForSpectrumNo(specID));
        spec->setSpectrumNo(specID);
      }

      NXFloat timeBins = monitor.openNXFloat("time_of_flight");
      timeBins.load();
      local_workspace->dataX(hist_index)
          .assign(timeBins(), timeBins() + timeBins.dim0());
      hist_index++;
    } else if (m_have_detector) {
      NXData nxdata = entry.openNXData("detector_1");
      NXDataSetTyped<int> data = nxdata.openIntData();
      data.open();
      // Start with the list members that are lower than the required spectrum
      const int *const spec_begin = m_spec.get();
      // When reading in blocks we need to be careful that the range is exactly
      // divisible by the block-size
      // and if not have an extra read of the left overs
      const int64_t blocksize = 8;
      const int64_t rangesize = block->last - block->first + 1;
      const int64_t fullblocks = rangesize / blocksize;
      int64_t spectra_no = block->first;

      // For this to work correctly, we assume that the spectrum list increases
      // monotonically
      int64_t filestart =
          std::lower_bound(spec_begin, m_spec_end, spectra_no) - spec_begin;
      if (fullblocks > 0) {
        for (int64_t i = 0; i < fullblocks; ++i) {
          loadBlock(data, blocksize, period_index, filestart, hist_index,
                    spectra_no, local_workspace);
          filestart += blocksize;
        }
      }
      int64_t finalblock = rangesize - (fullblocks * blocksize);
      if (finalblock > 0) {
        loadBlock(data, finalblock, period_index, filestart, hist_index,
                  spectra_no, local_workspace);
      }
    }
  }

  try {
    const std::string title = entry.getString("title");
    local_workspace->setTitle(title);
    // write the title into the log file (run object)
    local_workspace->mutableRun().addProperty("run_title", title, true);
  } catch (std::runtime_error &) {
    g_log.debug() << "No title was found in the input file, "
                  << getPropertyValue("Filename") << std::endl;
  }
}
开发者ID:stothe2,项目名称:mantid,代码行数:87,代码来源:LoadISISNexus2.cpp

示例7: b_re_sig


//.........这里部分代码省略.........
      // Read in the detector dimensions from the Detector tag
      int numberXPixels = 0;
      int numberYPixels = 0;
      std::string data_type = element->getAttribute("type");
      boost::regex b_re_sig("INT\\d+\\[(\\d+),(\\d+)\\]");
      if (boost::regex_match(data_type, b_re_sig))
      {
        boost::match_results<std::string::const_iterator> match;
        boost::regex_search(data_type, match, b_re_sig);
        // match[0] is the full string
        Kernel::Strings::convert(match[1], numberXPixels);
        Kernel::Strings::convert(match[2], numberYPixels);
      }
      if (numberXPixels==0 || numberYPixels==0)
        g_log.notice() << "Could not read in the number of pixels!" << std::endl;

      // We no longer read from the meta data because that data is wrong
      //from_element<int>(numberXPixels, sasEntryElem, "Number_of_X_Pixels", fileName);
      //from_element<int>(numberYPixels, sasEntryElem, "Number_of_Y_Pixels", fileName);

      // Store sample-detector distance
      declareProperty("SampleDetectorDistance", distance, Kernel::Direction::Output);

      // Create the output workspace

      // Number of bins: we use a single dummy TOF bin
      int nBins = 1;
      // Number of detectors: should be pulled from the geometry description. Use detector pixels for now.
      // The number of spectram also includes the monitor and the timer.
      int numSpectra = numberXPixels*numberYPixels + LoadSpice2D::nMonitors;

      DataObjects::Workspace2D_sptr ws = boost::dynamic_pointer_cast<DataObjects::Workspace2D>(
          API::WorkspaceFactory::Instance().create("Workspace2D", numSpectra, nBins+1, nBins));
      ws->setTitle(wsTitle);
      ws->getAxis(0)->unit() = Kernel::UnitFactory::Instance().create("Wavelength");
      ws->setYUnit("");
      API::Workspace_sptr workspace = boost::static_pointer_cast<API::Workspace>(ws);
      setProperty("OutputWorkspace", workspace);

      // Parse out each pixel. Pixels can be separated by white space, a tab, or an end-of-line character
      Poco::StringTokenizer pixels(data_str, " \n\t", Poco::StringTokenizer::TOK_TRIM | Poco::StringTokenizer::TOK_IGNORE_EMPTY);
      Poco::StringTokenizer::Iterator pixel = pixels.begin();

      // Check that we don't keep within the size of the workspace
      size_t pixelcount = pixels.count();
      if( pixelcount != static_cast<size_t>(numberXPixels*numberYPixels) )
      {
        throw Kernel::Exception::FileError("Inconsistent data set: "
            "There were more data pixels found than declared in the Spice XML meta-data.", fileName);
      }
      if( numSpectra == 0 )
      {
        throw Kernel::Exception::FileError("Empty data set: the data file has no pixel data.", fileName);
      }

      // Go through all detectors/channels
      int ipixel = 0;

      // Store monitor count
      store_value(ws, ipixel++, monitorCounts, monitorCounts>0 ? sqrt(monitorCounts) : 0.0,
          wavelength, dwavelength);

      // Store counting time
      store_value(ws, ipixel++, countingTime, 0.0, wavelength, dwavelength);

      // Store detector pixels
开发者ID:trnielsen,项目名称:mantid,代码行数:67,代码来源:LoadSpice2D.cpp

示例8: title


//.........这里部分代码省略.........
        runLoadInstrument(localWorkspace );
        runLoadMappingTable(localWorkspace );
        runLoadLog(localWorkspace );
        const int period_number = 1;
        Property* log=createPeriodLog(period_number);
        if(log)
        {
          localWorkspace->mutableRun().addLogData(log);
          localWorkspace->mutableRun().addLogData(createCurrentPeriodLog(period_number));
        }
              localWorkspace->mutableRun().setProtonCharge(isisRaw->rpb.r_gd_prtn_chrg);
        for (int i = 0; i < m_numberOfSpectra; ++i)
          localWorkspace->getAxis(1)->setValue(i, i+1);
        localWorkspace->populateInstrumentParameters();
        setProperty("OutputWorkspace",localWorkspace);
        return;
      }

      float* timeChannels = new float[lengthIn];
      isisRaw->getTimeChannels(timeChannels, lengthIn);
      // Put the read in array into a vector (inside a shared pointer)
      boost::shared_ptr<MantidVec> timeChannelsVec
                          (new MantidVec(timeChannels, timeChannels + lengthIn));

      // Need to extract the user-defined output workspace name
      Property *ws = getProperty("OutputWorkspace");
      std::string localWSName = ws->value();

      Progress pr(this,0.,1.,total_specs * m_numberOfPeriods);

      // Create the 2D workspace for the output
      DataObjects::Workspace2D_sptr localWorkspace = boost::dynamic_pointer_cast<DataObjects::Workspace2D>
               (WorkspaceFactory::Instance().create("Workspace2D",total_specs,lengthIn,lengthIn-1));
      localWorkspace->setTitle(title);
      localWorkspace->getAxis(0)->unit() = UnitFactory::Instance().create("TOF");
      // Run parameters
      helper->loadRunParameters(localWorkspace, isisRaw.get());
      delete helper;
      helper = NULL;

      // Loop over the number of periods in the raw file, putting each period in a separate workspace
      for (int period = 0; period < m_numberOfPeriods; ++period) {

        if ( period > 0 )
        {
            localWorkspace =  boost::dynamic_pointer_cast<DataObjects::Workspace2D>
                (WorkspaceFactory::Instance().create(localWorkspace));
        }

        isisRaw->skipData(file,period*(m_numberOfSpectra+1));
        int counter = 0;
        for (int i = 1; i <= m_numberOfSpectra; ++i)
        {
            int histToRead = i + period*(m_numberOfSpectra+1);
            if ((i >= m_spec_min && i < m_spec_max) ||
                (m_list && find(m_spec_list.begin(),m_spec_list.end(),i) != m_spec_list.end()))
            {
                isisRaw->readData(file,histToRead);
                // Copy the data into the workspace vector, discarding the 1st entry, which is rubbish
                // But note that the last (overflow) bin is kept
                MantidVec& Y = localWorkspace->dataY(counter);
                Y.assign(isisRaw->dat1 + 1, isisRaw->dat1 + lengthIn);
                // Fill the vector for the errors, containing sqrt(count)
                MantidVec& E = localWorkspace->dataE(counter);
                std::transform(Y.begin(), Y.end(), E.begin(), dblSqrt);
                // Set the X vector pointer and spectrum number
开发者ID:trnielsen,项目名称:mantid,代码行数:67,代码来源:LoadRaw2.cpp


注:本文中的dataobjects::Workspace2D_sptr::setTitle方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。