本文整理汇总了C++中dataobjects::Workspace2D_sptr::getSpectrum方法的典型用法代码示例。如果您正苦于以下问题:C++ Workspace2D_sptr::getSpectrum方法的具体用法?C++ Workspace2D_sptr::getSpectrum怎么用?C++ Workspace2D_sptr::getSpectrum使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类dataobjects::Workspace2D_sptr
的用法示例。
在下文中一共展示了Workspace2D_sptr::getSpectrum方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: double
/** Load in a single spectrum taken from a NeXus file
* @param hist :: The workspace index
* @param i :: The spectrum number
* @param specNo :: The spectrum number
* @param nxload :: A reference to the MuonNeXusReader object
* @param lengthIn :: The number of elements in a spectrum
* @param localWorkspace :: A pointer to the workspace in which the data will be
* stored
*/
void LoadMuonNexus1::loadData(size_t hist, specnum_t &i, specnum_t specNo,
MuonNexusReader &nxload, const int64_t lengthIn,
DataObjects::Workspace2D_sptr localWorkspace) {
// Read in a spectrum
// Put it into a vector, discarding the 1st entry, which is rubbish
// But note that the last (overflow) bin is kept
// For Nexus, not sure if above is the case, hence give all data for now
MantidVec &Y = localWorkspace->dataY(hist);
Y.assign(nxload.counts + i * lengthIn,
nxload.counts + i * lengthIn + lengthIn);
// Create and fill another vector for the errors, containing sqrt(count)
MantidVec &E = localWorkspace->dataE(hist);
typedef double (*uf)(double);
uf dblSqrt = std::sqrt;
std::transform(Y.begin(), Y.end(), E.begin(), dblSqrt);
// Populate the workspace. Loop starts from 1, hence i-1
// Create and fill another vector for the X axis
auto timeChannels = new float[lengthIn + 1]();
nxload.getTimeChannels(timeChannels, static_cast<const int>(lengthIn + 1));
// Put the read in array into a vector (inside a shared pointer)
auto timeChannelsVec = boost::make_shared<HistogramData::HistogramX>(
timeChannels, timeChannels + lengthIn + 1);
localWorkspace->setX(hist, timeChannelsVec);
localWorkspace->getSpectrum(hist).setSpectrumNo(specNo);
// Muon v1 files: always a one-to-one mapping between spectra and detectors
localWorkspace->getSpectrum(hist).setDetectorID(static_cast<detid_t>(specNo));
// Clean up
delete[] timeChannels;
}
示例2: final
/**
* Perform a call to nxgetslab, via the NexusClasses wrapped methods for a given
* block-size
* @param data :: The NXDataSet object
* @param blocksize :: The block-size to use
* @param period :: The period number
* @param start :: The index within the file to start reading from (zero based)
* @param hist :: The workspace index to start reading into
* @param spec_num :: The spectrum number that matches the hist variable
* @param local_workspace :: The workspace to fill the data with
*/
void LoadISISNexus2::loadBlock(NXDataSetTyped<int> &data, int64_t blocksize,
int64_t period, int64_t start, int64_t &hist,
int64_t &spec_num,
DataObjects::Workspace2D_sptr &local_workspace) {
data.load(static_cast<int>(blocksize), static_cast<int>(period),
static_cast<int>(start)); // TODO this is just wrong
int *data_start = data();
int *data_end = data_start + m_loadBlockInfo.numberOfChannels;
int64_t final(hist + blocksize);
while (hist < final) {
m_progress->report("Loading data");
MantidVec &Y = local_workspace->dataY(hist);
Y.assign(data_start, data_end);
data_start += m_detBlockInfo.numberOfChannels;
data_end += m_detBlockInfo.numberOfChannels;
MantidVec &E = local_workspace->dataE(hist);
std::transform(Y.begin(), Y.end(), E.begin(), dblSqrt);
// Populate the workspace. Loop starts from 1, hence i-1
local_workspace->setX(hist, m_tof_data);
if (m_load_selected_spectra) {
// local_workspace->getAxis(1)->setValue(hist,
// static_cast<specid_t>(spec_num));
auto spec = local_workspace->getSpectrum(hist);
specid_t specID = m_specInd2specNum_map.at(hist);
// set detectors corresponding to spectra Number
spec->setDetectorIDs(m_spec2det_map.getDetectorIDsForSpectrumNo(specID));
// set correct spectra Number
spec->setSpectrumNo(specID);
}
++hist;
++spec_num;
}
}
示例3: store_value
/**
* Convenience function to store a detector value into a given spectrum.
* Note that this type of data doesn't use TOD, so that we use a single dummy
* bin in X. Each detector is defined as a spectrum of length 1.
* @param ws: workspace
* @param specID: ID of the spectrum to store the value in
* @param value: value to store [count]
* @param error: error on the value [count]
* @param wavelength: wavelength value [Angstrom]
* @param dwavelength: error on the wavelength [Angstrom]
*/
void store_value(DataObjects::Workspace2D_sptr ws, int specID, double value,
double error, double wavelength, double dwavelength) {
auto &X = ws->mutableX(specID);
auto &Y = ws->mutableY(specID);
auto &E = ws->mutableE(specID);
// The following is mostly to make Mantid happy by defining a histogram with
// a single bin around the neutron wavelength
X[0] = wavelength - dwavelength / 2.0;
X[1] = wavelength + dwavelength / 2.0;
Y[0] = value;
E[0] = error;
ws->getSpectrum(specID).setSpectrumNo(specID);
}
示例4: runtime_error
/**
* Populate spectra mapping to detector IDs
*
* TODO: Get the detector size information from the workspace directly
*
* @param localWorkspace: Workspace2D object
* @param nxbins: number of bins in X
* @param nybins: number of bins in Y
*/
void LoadSpice2D::runLoadMappingTable(
DataObjects::Workspace2D_sptr localWorkspace, int nxbins, int nybins) {
// Get the number of monitor channels
boost::shared_ptr<const Geometry::Instrument> instrument =
localWorkspace->getInstrument();
std::vector<detid_t> monitors = instrument->getMonitors();
const int nMonitors = static_cast<int>(monitors.size());
// Number of monitors should be consistent with data file format
if (nMonitors != LoadSpice2D::nMonitors) {
std::stringstream error;
error << "Geometry error for " << instrument->getName()
<< ": Spice data format defines " << LoadSpice2D::nMonitors
<< " monitors, " << nMonitors << " were/was found";
throw std::runtime_error(error.str());
}
// Generate mapping of detector/channel IDs to spectrum ID
// Detector/channel counter
int icount = 0;
// Monitor: IDs start at 1 and increment by 1
for (int i = 0; i < nMonitors; i++) {
localWorkspace->getSpectrum(icount)->setDetectorID(icount + 1);
icount++;
}
// Detector pixels
for (int ix = 0; ix < nxbins; ix++) {
for (int iy = 0; iy < nybins; iy++) {
localWorkspace->getSpectrum(icount)
->setDetectorID(1000000 + iy * 1000 + ix);
icount++;
}
}
}
示例5: period_index
/**
* Load a given period into the workspace
* @param period :: The period number to load (starting from 1)
* @param entry :: The opened root entry node for accessing the monitor and data
* nodes
* @param local_workspace :: The workspace to place the data in
* @param update_spectra2det_mapping :: reset spectra-detector map to the one
* calculated earlier. (Warning! -- this map has to be calculated correctly!)
*/
void
LoadISISNexus2::loadPeriodData(int64_t period, NXEntry &entry,
DataObjects::Workspace2D_sptr &local_workspace,
bool update_spectra2det_mapping) {
int64_t hist_index = 0;
int64_t period_index(period - 1);
// int64_t first_monitor_spectrum = 0;
for (auto block = m_spectraBlocks.begin(); block != m_spectraBlocks.end();
++block) {
if (block->isMonitor) {
NXData monitor = entry.openNXData(block->monName);
NXInt mondata = monitor.openIntData();
m_progress->report("Loading monitor");
mondata.load(1, static_cast<int>(period - 1)); // TODO this is just wrong
MantidVec &Y = local_workspace->dataY(hist_index);
Y.assign(mondata(), mondata() + m_monBlockInfo.numberOfChannels);
MantidVec &E = local_workspace->dataE(hist_index);
std::transform(Y.begin(), Y.end(), E.begin(), dblSqrt);
if (update_spectra2det_mapping) {
// local_workspace->getAxis(1)->setValue(hist_index,
// static_cast<specid_t>(it->first));
auto spec = local_workspace->getSpectrum(hist_index);
specid_t specID = m_specInd2specNum_map.at(hist_index);
spec->setDetectorIDs(
m_spec2det_map.getDetectorIDsForSpectrumNo(specID));
spec->setSpectrumNo(specID);
}
NXFloat timeBins = monitor.openNXFloat("time_of_flight");
timeBins.load();
local_workspace->dataX(hist_index)
.assign(timeBins(), timeBins() + timeBins.dim0());
hist_index++;
} else if (m_have_detector) {
NXData nxdata = entry.openNXData("detector_1");
NXDataSetTyped<int> data = nxdata.openIntData();
data.open();
// Start with the list members that are lower than the required spectrum
const int *const spec_begin = m_spec.get();
// When reading in blocks we need to be careful that the range is exactly
// divisible by the block-size
// and if not have an extra read of the left overs
const int64_t blocksize = 8;
const int64_t rangesize = block->last - block->first + 1;
const int64_t fullblocks = rangesize / blocksize;
int64_t spectra_no = block->first;
// For this to work correctly, we assume that the spectrum list increases
// monotonically
int64_t filestart =
std::lower_bound(spec_begin, m_spec_end, spectra_no) - spec_begin;
if (fullblocks > 0) {
for (int64_t i = 0; i < fullblocks; ++i) {
loadBlock(data, blocksize, period_index, filestart, hist_index,
spectra_no, local_workspace);
filestart += blocksize;
}
}
int64_t finalblock = rangesize - (fullblocks * blocksize);
if (finalblock > 0) {
loadBlock(data, finalblock, period_index, filestart, hist_index,
spectra_no, local_workspace);
}
}
}
try {
const std::string title = entry.getString("title");
local_workspace->setTitle(title);
// write the title into the log file (run object)
local_workspace->mutableRun().addProperty("run_title", title, true);
} catch (std::runtime_error &) {
g_log.debug() << "No title was found in the input file, "
<< getPropertyValue("Filename") << std::endl;
}
}