当前位置: 首页>>代码示例>>C++>>正文


C++ Ptr::getParvo方法代码示例

本文整理汇总了C++中cv::Ptr::getParvo方法的典型用法代码示例。如果您正苦于以下问题:C++ Ptr::getParvo方法的具体用法?C++ Ptr::getParvo怎么用?C++ Ptr::getParvo使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在cv::Ptr的用法示例。


在下文中一共展示了Ptr::getParvo方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: main


//.........这里部分代码省略.........
    std::string inputImageNamePrototype(argv[1]);

    //////////////////////////////////////////////////////////////////////////////
    // checking input media type (still image, video file, live video acquisition)
    std::cout<<"RetinaDemo: setting up system with first image..."<<std::endl;
    loadNewFrame(inputImageNamePrototype, startFrameIndex, true);

    if (inputImage.empty())
    {
        help("could not load image, program end");
        return -1;
    }

    //////////////////////////////////////////////////////////////////////////////
    // Program start in a try/catch safety context (Retina may throw errors)
    try
    {
        /* create a retina instance with default parameters setup, uncomment the initialisation you wanna test
         * -> if the last parameter is 'log', then activate log sampling (favour foveal vision and subsamples peripheral vision)
         */
        if (useLogSampling)
        {
            retina = new cv::Retina(inputImage.size(),true, cv::RETINA_COLOR_BAYER, true, 2.0, 10.0);
        }
        else// -> else allocate "classical" retina :
            retina = new cv::Retina(inputImage.size());

        // save default retina parameters file in order to let you see this and maybe modify it and reload using method "setup"
        retina->write("RetinaDefaultParameters.xml");

        // desactivate Magnocellular pathway processing (motion information extraction) since it is not usefull here
        retina->activateMovingContoursProcessing(false);

        // declare retina output buffers
        cv::Mat retinaOutput_parvo;

        /////////////////////////////////////////////
        // prepare displays and interactions
        histogramClippingValue=0; // default value... updated with interface slider

        std::string retinaInputCorrected("Retina input image (with cut edges histogram for basic pixels error avoidance)");
        cv::namedWindow(retinaInputCorrected,1);
        cv::createTrackbar("histogram edges clipping limit", "Retina input image (with cut edges histogram for basic pixels error avoidance)",&histogramClippingValue,50,callBack_rescaleGrayLevelMat);

        std::string RetinaParvoWindow("Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping");
        cv::namedWindow(RetinaParvoWindow, 1);
        colorSaturationFactor=3;
        cv::createTrackbar("Color saturation", "Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", &colorSaturationFactor,5,callback_saturateColors);

        retinaHcellsGain=40;
        cv::createTrackbar("Hcells gain", "Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping",&retinaHcellsGain,100,callBack_updateRetinaParams);

        localAdaptation_photoreceptors=197;
        localAdaptation_Gcells=190;
        cv::createTrackbar("Ph sensitivity", "Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", &localAdaptation_photoreceptors,199,callBack_updateRetinaParams);
        cv::createTrackbar("Gcells sensitivity", "Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", &localAdaptation_Gcells,199,callBack_updateRetinaParams);

        std::string powerTransformedInput("EXR image with basic processing : 16bits=>8bits with gamma correction");

        /////////////////////////////////////////////
        // apply default parameters of user interaction variables
        callBack_updateRetinaParams(1,NULL); // first call for default parameters setup
        callback_saturateColors(1, NULL);

        // processing loop with stop condition
        currentFrameIndex=startFrameIndex;
        while(currentFrameIndex <= endFrameIndex)
        {
            loadNewFrame(inputImageNamePrototype, currentFrameIndex, false);

            if (inputImage.empty())
            {
                std::cout<<"Could not load new image (index = "<<currentFrameIndex<<"), program end"<<std::endl;
                return -1;
            }
            // display input & process standard power transformation
            imshow("EXR image original image, 16bits=>8bits linear rescaling ", imageInputRescaled);
            cv::Mat gammaTransformedImage;
            cv::pow(imageInputRescaled, 1./5, gammaTransformedImage); // apply gamma curve: img = img ** (1./5)
            imshow(powerTransformedInput, gammaTransformedImage);
            // run retina filter
            retina->run(imageInputRescaled);
            // Retrieve and display retina output
            retina->getParvo(retinaOutput_parvo);
            cv::imshow(retinaInputCorrected, imageInputRescaled/255.f);
            cv::imshow(RetinaParvoWindow, retinaOutput_parvo);
            cv::waitKey(4);
            // jump to next frame
            ++currentFrameIndex;
        }
    } catch(cv::Exception e)
    {
        std::cerr<<"Error using Retina : "<<e.what()<<std::endl;
    }

    // Program end message
    std::cout<<"Retina demo end"<<std::endl;

    return 0;
}
开发者ID:,项目名称:,代码行数:101,代码来源:

示例2: main


//.........这里部分代码省略.........
     imshow("EXR image with basic processing : 16bits=>8bits with gamma correction", gammaTransformedImage);
     if (inputImage.empty())
     {
         help("Input image could not be loaded, aborting");
         return -1;
     }

     //////////////////////////////////////////////////////////////////////////////
     // Program start in a try/catch safety context (Retina may throw errors)
     try
     {
         /* create a retina instance with default parameters setup, uncomment the initialisation you wanna test
          * -> if the last parameter is 'log', then activate log sampling (favour foveal vision and subsamples peripheral vision)
          */
         if (useLogSampling)
         {
             retina = cv::bioinspired::createRetina(inputImage.size(),true, cv::bioinspired::RETINA_COLOR_BAYER, true, 2.0, 10.0);
                 }
         else// -> else allocate "classical" retina :
             retina = cv::bioinspired::createRetina(inputImage.size());

         // create a fast retina tone mapper (Meyla&al algorithm)
         std::cout<<"Allocating fast tone mapper..."<<std::endl;
         //cv::Ptr<cv::RetinaFastToneMapping> fastToneMapper=createRetinaFastToneMapping(inputImage.size());
         std::cout<<"Fast tone mapper allocated"<<std::endl;

         // save default retina parameters file in order to let you see this and maybe modify it and reload using method "setup"
         retina->write("RetinaDefaultParameters.xml");

         // desactivate Magnocellular pathway processing (motion information extraction) since it is not usefull here
         retina->activateMovingContoursProcessing(false);

         // declare retina output buffers
         cv::Mat retinaOutput_parvo;

         /////////////////////////////////////////////
         // prepare displays and interactions
         histogramClippingValue=0; // default value... updated with interface slider
         //inputRescaleMat = inputImage;
         //outputRescaleMat = imageInputRescaled;
         cv::namedWindow("Processing configuration",1);
         cv::createTrackbar("histogram edges clipping limit", "Processing configuration",&histogramClippingValue,50,callBack_rescaleGrayLevelMat);

         colorSaturationFactor=3;
         cv::createTrackbar("Color saturation", "Processing configuration", &colorSaturationFactor,5,callback_saturateColors);

         retinaHcellsGain=40;
         cv::createTrackbar("Hcells gain", "Processing configuration",&retinaHcellsGain,100,callBack_updateRetinaParams);

         localAdaptation_photoreceptors=197;
         localAdaptation_Gcells=190;
         cv::createTrackbar("Ph sensitivity", "Processing configuration", &localAdaptation_photoreceptors,199,callBack_updateRetinaParams);
         cv::createTrackbar("Gcells sensitivity", "Processing configuration", &localAdaptation_Gcells,199,callBack_updateRetinaParams);


         /////////////////////////////////////////////
         // apply default parameters of user interaction variables
         rescaleGrayLevelMat(inputImage, imageInputRescaled, (float)histogramClippingValue/100);
         retina->setColorSaturation(true,(float)colorSaturationFactor);
         callBack_updateRetinaParams(1,NULL); // first call for default parameters setup

         // processing loop with stop condition
         bool continueProcessing=true;
         while(continueProcessing)
         {
             // run retina filter
             if (!chosenMethod)
             {
                 retina->run(imageInputRescaled);
                 // Retrieve and display retina output
                 retina->getParvo(retinaOutput_parvo);
                 cv::imshow("Retina input image (with cut edges histogram for basic pixels error avoidance)", imageInputRescaled/255.0);
                 cv::imshow("Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", retinaOutput_parvo);
                 cv::imwrite("HDRinput.jpg",imageInputRescaled/255.0);
                 cv::imwrite("RetinaToneMapping.jpg",retinaOutput_parvo);
             }
             else
             {
                 // apply the simplified hdr tone mapping method
                 cv::Mat fastToneMappingOutput;
                 retina->applyFastToneMapping(imageInputRescaled, fastToneMappingOutput);
                 cv::imshow("Retina fast tone mapping output : 16bit=>8bit image retina tonemapping", fastToneMappingOutput);
             }
             /*cv::Mat fastToneMappingOutput_specificObject;
             fastToneMapper->setup(3.f, 1.5f, 1.f);
             fastToneMapper->applyFastToneMapping(imageInputRescaled, fastToneMappingOutput_specificObject);
             cv::imshow("### Retina fast tone mapping output : 16bit=>8bit image retina tonemapping", fastToneMappingOutput_specificObject);
*/
             cv::waitKey(10);
         }
     }catch(cv::Exception e)
     {
         std::cerr<<"Error using Retina : "<<e.what()<<std::endl;
     }

     // Program end message
     std::cout<<"Retina demo end"<<std::endl;

     return 0;
 }
开发者ID:AnnaMariaM,项目名称:opencv,代码行数:101,代码来源:OpenEXRimages_HDR_Retina_toneMapping.cpp


注:本文中的cv::Ptr::getParvo方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。