当前位置: 首页>>代码示例>>C++>>正文


C++ cv::Ptr类代码示例

本文整理汇总了C++中cv::Ptr的典型用法代码示例。如果您正苦于以下问题:C++ Ptr类的具体用法?C++ Ptr怎么用?C++ Ptr使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了Ptr类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: callback

    void callback(const sensor_msgs::ImageConstPtr& msg)
    {
        if (image_0_ == NULL)
        {
            // Take first image:
            try
            {
                image_0_ = cv_bridge::toCvCopy(msg,
                        sensor_msgs::image_encodings::isColor(msg->encoding) ?
                        sensor_msgs::image_encodings::BGR8 :
                        sensor_msgs::image_encodings::MONO8);
            }
            catch (cv_bridge::Exception& e)
            {
                ROS_ERROR_STREAM("Failed to take first image: " << e.what());
                return;
            }

            ROS_INFO("First image taken");

            // Detect keypoints:
            detector_->detect(image_0_->image, keypoints_0_);
            ROS_INFO_STREAM(keypoints_0_.size() << " points found.");

            // Extract keypoints' descriptors:
            extractor_->compute(image_0_->image, keypoints_0_, descriptors_0_);
        }
        else
        {
            // Take second image:
            try
            {
                image_1_ = cv_bridge::toCvShare(msg,
                        sensor_msgs::image_encodings::isColor(msg->encoding) ?
                        sensor_msgs::image_encodings::BGR8 :
                        sensor_msgs::image_encodings::MONO8);
            }
            catch (cv_bridge::Exception& e)
            {
                ROS_ERROR_STREAM("Failed to take image: " << e.what());
                return;
            }

            // Detect keypoints:
            std::vector<cv::KeyPoint> keypoints_1;
            detector_->detect(image_1_->image, keypoints_1);
            ROS_INFO_STREAM(keypoints_1.size() << " points found on the new image.");

            // Extract keypoints' descriptors:
            cv::Mat descriptors_1;
            extractor_->compute(image_1_->image, keypoints_1, descriptors_1);

            // Compute matches:
            std::vector<cv::DMatch> matches;
            match(descriptors_0_, descriptors_1, matches);

            // Compute homography:
            cv::Mat H;
            homography(keypoints_0_, keypoints_1, matches, H);

            // Draw matches:
            const int s = std::max(image_0_->image.rows, image_0_->image.cols);
            cv::Size size(s, s);
            cv::Mat draw_image;
            warped_image_ = boost::make_shared<cv_bridge::CvImage>(
                    image_0_->header, image_0_->encoding,
                    cv::Mat(size, image_0_->image.type()));
            if (!H.empty()) // filter outliers
            {
                std::vector<char> matchesMask(matches.size(), 0);

                const size_t N = matches.size();
                std::vector<int> queryIdxs(N), trainIdxs(N);
                for (size_t i = 0; i < N; ++i)
                {
                    queryIdxs[i] = matches[i].queryIdx;
                    trainIdxs[i] = matches[i].trainIdx;
                }

                std::vector<cv::Point2f> points1, points2;
                cv::KeyPoint::convert(keypoints_0_, points1, queryIdxs);
                cv::KeyPoint::convert(keypoints_1, points2, trainIdxs);

                cv::Mat points1t;
                cv::perspectiveTransform(cv::Mat(points1), points1t, H);

                double maxInlierDist = threshold_ < 0 ? 3 : threshold_;
                for (size_t i1 = 0; i1 < points1.size(); ++i1)
                {
                    if (cv::norm(points2[i1] - points1t.at<cv::Point2f>((int)i1,0)) <= maxInlierDist ) // inlier
                        matchesMask[i1] = 1;
                }
                // draw inliers
                cv::drawMatches(
                        image_0_->image, keypoints_0_,
                        image_1_->image, keypoints_1, matches,
                        draw_image, cv::Scalar(0, 255, 0), cv::Scalar(0, 0, 255),
                        matchesMask,
                        cv::DrawMatchesFlags::DRAW_RICH_KEYPOINTS);

//.........这里部分代码省略.........
开发者ID:PETGreen,项目名称:effective_robotics_programming_with_ros,代码行数:101,代码来源:homography.cpp

示例2: CascadeDetectorAdapter

 CascadeDetectorAdapter(cv::Ptr<cv::CascadeClassifier> detector):
     Detector(detector)
 {
     CV_Assert(!detector.empty());
 }
开发者ID:Linyes,项目名称:opencv,代码行数:5,代码来源:detection_based_tracker_sample.cpp

示例3: calculate

void MapperGradEuclid::calculate(
    const cv::Mat& img1, const cv::Mat& image2, cv::Ptr<Map>& res) const
{
    Mat gradx, grady, imgDiff;
    Mat img2;

    CV_DbgAssert(img1.size() == image2.size());
    CV_DbgAssert(img1.channels() == image2.channels());
    CV_DbgAssert(img1.channels() == 1 || img1.channels() == 3);

    if(!res.empty()) {
        // We have initial values for the registration: we move img2 to that initial reference
        res->inverseWarp(image2, img2);
    } else {
        img2 = image2;
    }

    // Matrices with reference frame coordinates
    Mat grid_r, grid_c;
    grid(img1, grid_r, grid_c);

    // Get gradient in all channels
    gradient(img1, img2, gradx, grady, imgDiff);

    // Calculate parameters using least squares
    Matx<double, 3, 3> A;
    Vec<double, 3> b;
    // For each value in A, all the matrix elements are added and then the channels are also added,
    // so we have two calls to "sum". The result can be found in the first element of the final
    // Scalar object.
    Mat xIy_yIx = grid_c.mul(grady);
    xIy_yIx -= grid_r.mul(gradx);

    A(0, 0) = sum(sum(gradx.mul(gradx)))[0];
    A(0, 1) = sum(sum(gradx.mul(grady)))[0];
    A(0, 2) = sum(sum(gradx.mul(xIy_yIx)))[0];
    A(1, 1) = sum(sum(grady.mul(grady)))[0];
    A(1, 2) = sum(sum(grady.mul(xIy_yIx)))[0];
    A(2, 2) = sum(sum(xIy_yIx.mul(xIy_yIx)))[0];
    A(1, 0) = A(0, 1);
    A(2, 0) = A(0, 2);
    A(2, 1) = A(1, 2);

    b(0) = -sum(sum(imgDiff.mul(gradx)))[0];
    b(1) = -sum(sum(imgDiff.mul(grady)))[0];
    b(2) = -sum(sum(imgDiff.mul(xIy_yIx)))[0];

    // Calculate parameters. We use Cholesky decomposition, as A is symmetric.
    Vec<double, 3> k = A.inv(DECOMP_CHOLESKY)*b;

    double cosT = cos(k(2));
    double sinT = sin(k(2));
    Matx<double, 2, 2> linTr(cosT, -sinT, sinT, cosT);
    Vec<double, 2> shift(k(0), k(1));

    if(res.empty()) {
        res = Ptr<Map>(new MapAffine(linTr, shift));
    } else {
        MapAffine newTr(linTr, shift);
        res->compose(newTr);
   }
}
开发者ID:23pointsNorth,项目名称:opencv_contrib,代码行数:62,代码来源:mappergradeuclid.cpp

示例4: main

 int main(int argc, char* argv[]) {
     // welcome message
     std::cout<<"*********************************************************************************"<<std::endl;
     std::cout<<"* Retina demonstration for High Dynamic Range compression (tone-mapping) : demonstrates the use of a wrapper class of the Gipsa/Listic Labs retina model."<<std::endl;
     std::cout<<"* This retina model allows spatio-temporal image processing (applied on still images, video sequences)."<<std::endl;
     std::cout<<"* This demo focuses demonstration of the dynamic compression capabilities of the model"<<std::endl;
     std::cout<<"* => the main application is tone mapping of HDR images (i.e. see on a 8bit display a more than 8bits coded (up to 16bits) image with details in high and low luminance ranges"<<std::endl;
     std::cout<<"* The retina model still have the following properties:"<<std::endl;
     std::cout<<"* => It applies a spectral whithening (mid-frequency details enhancement)"<<std::endl;
     std::cout<<"* => high frequency spatio-temporal noise reduction"<<std::endl;
     std::cout<<"* => low frequency luminance to be reduced (luminance range compression)"<<std::endl;
     std::cout<<"* => local logarithmic luminance compression allows details to be enhanced in low light conditions\n"<<std::endl;
     std::cout<<"* for more information, reer to the following papers :"<<std::endl;
     std::cout<<"* Benoit A., Caplier A., Durette B., Herault, J., \"USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING\", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011"<<std::endl;
     std::cout<<"* Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891."<<std::endl;
     std::cout<<"* => reports comments/remarks at [email protected]"<<std::endl;
     std::cout<<"* => more informations and papers at : http://sites.google.com/site/benoitalexandrevision/"<<std::endl;
     std::cout<<"*********************************************************************************"<<std::endl;
     std::cout<<"** WARNING : this sample requires OpenCV to be configured with OpenEXR support **"<<std::endl;
     std::cout<<"*********************************************************************************"<<std::endl;
     std::cout<<"*** You can use free tools to generate OpenEXR images from images sets   :    ***"<<std::endl;
     std::cout<<"*** =>  1. take a set of photos from the same viewpoint using bracketing      ***"<<std::endl;
     std::cout<<"*** =>  2. generate an OpenEXR image with tools like qtpfsgui.sourceforge.net ***"<<std::endl;
     std::cout<<"*** =>  3. apply tone mapping with this program                               ***"<<std::endl;
     std::cout<<"*********************************************************************************"<<std::endl;

     // basic input arguments checking
     if (argc<2)
     {
         help("bad number of parameter");
         return -1;
     }

     bool useLogSampling = !strcmp(argv[argc-1], "log"); // check if user wants retina log sampling processing
     int chosenMethod=0;
     if (!strcmp(argv[argc-1], "fast"))
     {
         chosenMethod=1;
         std::cout<<"Using fast method (no spectral whithning), adaptation of Meylan&al 2008 method"<<std::endl;
     }

     std::string inputImageName=argv[1];

     //////////////////////////////////////////////////////////////////////////////
     // checking input media type (still image, video file, live video acquisition)
     std::cout<<"RetinaDemo: processing image "<<inputImageName<<std::endl;
     // image processing case
     // declare the retina input buffer... that will be fed differently in regard of the input media
     inputImage = cv::imread(inputImageName, -1); // load image in RGB mode
     std::cout<<"=> image size (h,w) = "<<inputImage.size().height<<", "<<inputImage.size().width<<std::endl;
     if (!inputImage.total())
     {
        help("could not load image, program end");
            return -1;
         }
     // rescale between 0 and 1
     normalize(inputImage, inputImage, 0.0, 1.0, cv::NORM_MINMAX);
     cv::Mat gammaTransformedImage;
     cv::pow(inputImage, 1./5, gammaTransformedImage); // apply gamma curve: img = img ** (1./5)
     imshow("EXR image original image, 16bits=>8bits linear rescaling ", inputImage);
     imshow("EXR image with basic processing : 16bits=>8bits with gamma correction", gammaTransformedImage);
     if (inputImage.empty())
     {
         help("Input image could not be loaded, aborting");
         return -1;
     }

     //////////////////////////////////////////////////////////////////////////////
     // Program start in a try/catch safety context (Retina may throw errors)
     try
     {
         /* create a retina instance with default parameters setup, uncomment the initialisation you wanna test
          * -> if the last parameter is 'log', then activate log sampling (favour foveal vision and subsamples peripheral vision)
          */
         if (useLogSampling)
         {
             retina = cv::bioinspired::createRetina(inputImage.size(),true, cv::bioinspired::RETINA_COLOR_BAYER, true, 2.0, 10.0);
                 }
         else// -> else allocate "classical" retina :
             retina = cv::bioinspired::createRetina(inputImage.size());

         // create a fast retina tone mapper (Meyla&al algorithm)
         std::cout<<"Allocating fast tone mapper..."<<std::endl;
         //cv::Ptr<cv::RetinaFastToneMapping> fastToneMapper=createRetinaFastToneMapping(inputImage.size());
         std::cout<<"Fast tone mapper allocated"<<std::endl;

         // save default retina parameters file in order to let you see this and maybe modify it and reload using method "setup"
         retina->write("RetinaDefaultParameters.xml");

         // desactivate Magnocellular pathway processing (motion information extraction) since it is not usefull here
         retina->activateMovingContoursProcessing(false);

         // declare retina output buffers
         cv::Mat retinaOutput_parvo;

         /////////////////////////////////////////////
         // prepare displays and interactions
         histogramClippingValue=0; // default value... updated with interface slider
         //inputRescaleMat = inputImage;
         //outputRescaleMat = imageInputRescaled;
//.........这里部分代码省略.........
开发者ID:AnnaMariaM,项目名称:opencv,代码行数:101,代码来源:OpenEXRimages_HDR_Retina_toneMapping.cpp

示例5: findCirclesGridAB

bool findCirclesGridAB( cv::InputArray _image, cv::Size patternSize,
		cv::OutputArray _centers, int flags, const cv::Ptr<cv::FeatureDetector> &blobDetector )
{
    bool isAsymmetricGrid = (flags & cv::CALIB_CB_ASYMMETRIC_GRID) ? true : false;
    bool isSymmetricGrid  = (flags & cv::CALIB_CB_SYMMETRIC_GRID ) ? true : false;
    CV_Assert(isAsymmetricGrid ^ isSymmetricGrid);

    cv::Mat image = _image.getMat();
    std::vector<cv::Point2f> centers;

    std::vector<cv::KeyPoint> keypoints;
    blobDetector->detect(image, keypoints);
    std::vector<cv::Point2f> points;
    for (size_t i = 0; i < keypoints.size(); i++)
    {
      points.push_back (keypoints[i].pt);
    }

    if(flags & cv::CALIB_CB_CLUSTERING)
    {
      CirclesGridClusterFinder circlesGridClusterFinder(isAsymmetricGrid);
      circlesGridClusterFinder.findGrid(points, patternSize, centers);
      cv::Mat(centers).copyTo(_centers);
      return !centers.empty();
    }

    CirclesGridFinderParameters parameters;
    parameters.vertexPenalty = -0.6f;
    parameters.vertexGain = 1;
    parameters.existingVertexGain = 10000;
    parameters.edgeGain = 1;
    parameters.edgePenalty = -0.6f;

    if(flags & cv::CALIB_CB_ASYMMETRIC_GRID)
      parameters.gridType = CirclesGridFinderParameters::ASYMMETRIC_GRID;
    if(flags & cv::CALIB_CB_SYMMETRIC_GRID)
      parameters.gridType = CirclesGridFinderParameters::SYMMETRIC_GRID;

    const int attempts = 2;
    const size_t minHomographyPoints = 4;
    cv::Mat H;
    for (int i = 0; i < attempts; i++)
    {
      centers.clear();
      CirclesGridFinder boxFinder(patternSize, points, parameters);
      bool isFound = false;
//#define BE_QUIET 1
#if BE_QUIET
      void* oldCbkData;
      //cv::ErrorCallback oldCbk = redirectError(quiet_error, 0, &oldCbkData);
#endif
      try
      {
        isFound = boxFinder.findHoles();
      }
      catch (cv::Exception)
      {

      }
#if BE_QUIET
      redirectError(oldCbk, oldCbkData);
#endif
      if (isFound)
      {
      	switch(parameters.gridType)
      	{
          case CirclesGridFinderParameters::SYMMETRIC_GRID:
            boxFinder.getHoles(centers);
            break;
          case CirclesGridFinderParameters::ASYMMETRIC_GRID:
	    boxFinder.getAsymmetricHoles(centers);
	    break;
          default:
            CV_Error(CV_StsBadArg, "Unkown pattern type");
      	}

        if (i != 0)
        {
        	cv::Mat orgPointsMat;
        	cv::transform(centers, orgPointsMat, H.inv());
        	cv::convertPointsFromHomogeneous(orgPointsMat, centers);
        }
        cv::Mat(centers).copyTo(_centers);
        return true;
      }

      boxFinder.getHoles(centers);
      if (i != attempts - 1)
      {
        if (centers.size() < minHomographyPoints)
          break;
        H = CirclesGridFinder::rectifyGrid(boxFinder.getDetectedGridSize(), centers, points, points);
      }
    }
    cv::Mat(centers).copyTo(_centers);
    return false;
}
开发者ID:abroun,项目名称:text_mapping,代码行数:97,代码来源:camera_calibration.cpp

示例6: calculate

void MapperGradProj::calculate(
    const cv::Mat& img1, const cv::Mat& image2, cv::Ptr<Map>& res) const
{
    Mat gradx, grady, imgDiff;
    Mat img2;

    CV_DbgAssert(img1.size() == image2.size());
    CV_DbgAssert(img1.channels() == image2.channels());
    CV_DbgAssert(img1.channels() == 1 || img1.channels() == 3);

    if(!res.empty()) {
        // We have initial values for the registration: we move img2 to that initial reference
        res->inverseWarp(image2, img2);
    } else {
        img2 = image2;
    }

    // Get gradient in all channels
    gradient(img1, img2, gradx, grady, imgDiff);

    // Matrices with reference frame coordinates
    Mat grid_r, grid_c;
    grid(img1, grid_r, grid_c);

    // Calculate parameters using least squares
    Matx<double, 8, 8> A;
    Vec<double, 8> b;
    // For each value in A, all the matrix elements are added and then the channels are also added,
    // so we have two calls to "sum". The result can be found in the first element of the final
    // Scalar object.
    Mat xIx = grid_c.mul(gradx);
    Mat xIy = grid_c.mul(grady);
    Mat yIx = grid_r.mul(gradx);
    Mat yIy = grid_r.mul(grady);
    Mat Ix2 = gradx.mul(gradx);
    Mat Iy2 = grady.mul(grady);
    Mat xy = grid_c.mul(grid_r);
    Mat IxIy = gradx.mul(grady);
    Mat x2 = grid_c.mul(grid_c);
    Mat y2 = grid_r.mul(grid_r);
    Mat G = xIx + yIy;
    Mat G2 = sqr(G);
    Mat IxG = gradx.mul(G);
    Mat IyG = grady.mul(G);

    A(0, 0) = sum(sum(x2.mul(Ix2)))[0];
    A(1, 0) = sum(sum(xy.mul(Ix2)))[0];
    A(2, 0) = sum(sum(grid_c.mul(Ix2)))[0];
    A(3, 0) = sum(sum(x2.mul(IxIy)))[0];
    A(4, 0) = sum(sum(xy.mul(IxIy)))[0];
    A(5, 0) = sum(sum(grid_c.mul(IxIy)))[0];
    A(6, 0) = -sum(sum(x2.mul(IxG)))[0];
    A(7, 0) = -sum(sum(xy.mul(IxG)))[0];

    A(1, 1) = sum(sum(y2.mul(Ix2)))[0];
    A(2, 1) = sum(sum(grid_r.mul(Ix2)))[0];
    A(3, 1) = A(4, 0);
    A(4, 1) = sum(sum(y2.mul(IxIy)))[0];
    A(5, 1) = sum(sum(grid_r.mul(IxIy)))[0];
    A(6, 1) = A(7, 0);
    A(7, 1) = -sum(sum(y2.mul(IxG)))[0];

    A(2, 2) = sum(sum(Ix2))[0];
    A(3, 2) = A(5, 0);
    A(4, 2) = A(5, 1);
    A(5, 2) = sum(sum(IxIy))[0];
    A(6, 2) = -sum(sum(grid_c.mul(IxG)))[0];
    A(7, 2) = -sum(sum(grid_r.mul(IxG)))[0];

    A(3, 3) = sum(sum(x2.mul(Iy2)))[0];
    A(4, 3) = sum(sum(xy.mul(Iy2)))[0];
    A(5, 3) = sum(sum(grid_c.mul(Iy2)))[0];
    A(6, 3) = -sum(sum(x2.mul(IyG)))[0];
    A(7, 3) = -sum(sum(xy.mul(IyG)))[0];

    A(4, 4) = sum(sum(y2.mul(Iy2)))[0];
    A(5, 4) = sum(sum(grid_r.mul(Iy2)))[0];
    A(6, 4) = A(7, 3);
    A(7, 4) = -sum(sum(y2.mul(IyG)))[0];

    A(5, 5) = sum(sum(Iy2))[0];
    A(6, 5) = -sum(sum(grid_c.mul(IyG)))[0];
    A(7, 5) = -sum(sum(grid_r.mul(IyG)))[0];

    A(6, 6) = sum(sum(x2.mul(G2)))[0];
    A(7, 6) = sum(sum(xy.mul(G2)))[0];

    A(7, 7) = sum(sum(y2.mul(G2)))[0];

    // Upper half values (A is symmetric)
    A(0, 1) = A(1, 0);
    A(0, 2) = A(2, 0);
    A(0, 3) = A(3, 0);
    A(0, 4) = A(4, 0);
    A(0, 5) = A(5, 0);
    A(0, 6) = A(6, 0);
    A(0, 7) = A(7, 0);
    
    A(1, 2) = A(2, 1);
    A(1, 3) = A(3, 1);
//.........这里部分代码省略.........
开发者ID:alfonsosanchezbeato,项目名称:OpenCV_reg,代码行数:101,代码来源:mappergradproj.cpp

示例7: stereoSelectorCallback

void stereoSelectorCallback(const sensor_msgs::Image::ConstPtr& image_ptr)
{
    if(!capture_image)
    	return;

	

    cv_bridge::CvImagePtr cv_ptr;

    try
    {
      cv_ptr = cv_bridge::toCvCopy(image_ptr, sensor_msgs::image_encodings::RGB8);
    }
    catch (cv_bridge::Exception& e)
    {
		ROS_ERROR("cv_bridge exception: %s", e.what());
		return;
    }

    cv::cvtColor(cv_ptr->image, input_image, CV_BGR2RGB);

    string object_name;

    //input_image = crop_hand(input_image);

    float certainty = orbit->recognizeObject(input_image, object_name, Orbit::BAG_OF_WORDS_SVM);


	/*
	*	Clean stabilizer if gesture has not been seen in a while
	*/

	ros::Time now = ros::Time::now();
	ros::Duration diff_last_hand_received = now - last_hand_received;
	
	last_hand_received = now;

	if(diff_last_hand_received.toSec()>1)
	{
		for(unsigned int i = 0; i<stabilizer.size(); i++)
		{
			stabilizer[i] = 0;
		}
	}

    /*
     * Update stabilizer when the gesture is not recognized
     */
	if(certainty<(float)certainty_threshold)
	{
		for(unsigned int i = 0; i<stabilizer.size()-1; i++)
		{

			if(stabilizer[i]>0)
				stabilizer[i]--;
		}

		if(stabilizer[stabilizer.size()-1] < max_stabilizer)
			stabilizer[stabilizer.size()-1]++;

		return;
	}
	else
	{
		if(stabilizer[stabilizer.size()-1] >= 2)
			stabilizer[stabilizer.size()-1]-=2;
		else if(stabilizer[stabilizer.size()-1] == 1)
			stabilizer[stabilizer.size()-1]--;
	}






	/*
	 * Update stabilizer when gesture is known
	 */
	for(unsigned int i = 0; i<stabilizer.size()-1; i++)
	{
		if(object_name == hands[i])
		{
			if(stabilizer[i] < max_stabilizer)
				stabilizer[i]++;
		}
		else
		{	if(stabilizer[i]>0)
				stabilizer[i]--;
		}
	}


	/*
	 * Print Stabilizer values
	 */
	for(unsigned int i = 0; i<stabilizer.size(); i++)
	{
		if(i<stabilizer.size()-1)
			printf("%s: %d, ",hands[i].c_str(), stabilizer[i]);
		else
//.........这里部分代码省略.........
开发者ID:Atom-machinerule,项目名称:OpenQbo,代码行数:101,代码来源:hand_gesture_node.cpp

示例8: backgroundSubstractionDetection

void backgroundSubstractionDetection(cv::Mat sequence, std::vector<cv::Rect> &detectedPedestrianFiltered, cv::Ptr<cv::BackgroundSubtractor> &pMOG2, trackingOption &tracking)
{
    int threshold = 150;
    cv::Mat mask;
    cv::Mat sequenceGrayDiff;
    std::vector<std::vector<cv::Point> > contours;
    std::vector<cv::Vec4i> hierarchy;
    std::vector<std::vector<cv::Point> > contours_poly;
    std::vector<cv::Rect> detectedPedestrian;

    pMOG2->apply(sequence,sequenceGrayDiff);


    cv::threshold(sequenceGrayDiff, mask, threshold, 255, cv::THRESH_BINARY);

    cv::erode(mask, mask, cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(6,6)));
    cv::dilate(mask, mask, cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(25,55)));
    cv::erode(mask, mask, cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(3,6)));


    /*
    cv::Mat dist;
    cv::distanceTransform(mask, dist, CV_DIST_L2, 3);
    cv::normalize(dist, dist, 0, 1., cv::NORM_MINMAX);
    cv::threshold(dist, dist, .4, 1., CV_THRESH_BINARY);
    cv::imshow("temp", dist);
    */

    cv::findContours(mask, contours, hierarchy, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_SIMPLE, cv::Point(0,0));

    contours_poly.resize(contours.size());
    detectedPedestrian.resize(contours.size());

    for(size_t j=0;j<contours.size();j++)
    {
        cv::approxPolyDP(cv::Mat(contours[j]), contours_poly[j], 3, true);
        detectedPedestrian[j] = cv::boundingRect(cv::Mat(contours_poly[j]));


        //test
        /*
        double pix = 30;
        if(detectedPedestrian[j].x >= pix)
            detectedPedestrian[j].x -= pix;
        else
            detectedPedestrian[j].x = 0;
        if((detectedPedestrian[j].x+detectedPedestrian[j].width) <= (sequence.cols-pix))
            detectedPedestrian[j].width += pix;
        else
            detectedPedestrian[j].width = sequence.cols - detectedPedestrian[j].x;
        if(detectedPedestrian[j].y >= pix)
            detectedPedestrian[j].y -= pix;
        else
            detectedPedestrian[j].y = 0;
        if((detectedPedestrian[j].y+detectedPedestrian[j].height) <= (sequence.rows-pix))
            detectedPedestrian[j].height += pix;
        else
            detectedPedestrian[j].height = sequence.rows - detectedPedestrian[j].y;
        */
    }

    if(detectedPedestrian.size() != 0)
    {
        tracking = GOOD_FEATURES_TO_TRACK;
        detectedPedestrianFiltered.clear();
        detectedPedestrianFiltered.resize(detectedPedestrian.size());
        detectedPedestrianFiltered = detectedPedestrian;
    }
    else
        tracking = NOTHING_TO_TRACK;

}
开发者ID:Pandhariix,项目名称:Tracking,代码行数:72,代码来源:main.cpp

示例9: main

 int main(int argc, char* argv[]) {
     // welcome message
     std::cout<<"*********************************************************************************"<<std::endl;
     std::cout<<"* Retina demonstration for High Dynamic Range compression (tone-mapping) : demonstrates the use of a wrapper class of the Gipsa/Listic Labs retina model."<<std::endl;
     std::cout<<"* This retina model allows spatio-temporal image processing (applied on still images, video sequences)."<<std::endl;
     std::cout<<"* This demo focuses demonstration of the dynamic compression capabilities of the model"<<std::endl;
     std::cout<<"* => the main application is tone mapping of HDR images (i.e. see on a 8bit display a more than 8bits coded (up to 16bits) image with details in high and low luminance ranges"<<std::endl;
     std::cout<<"* The retina model still have the following properties:"<<std::endl;
     std::cout<<"* => It applies a spectral whithening (mid-frequency details enhancement)"<<std::endl;
     std::cout<<"* => high frequency spatio-temporal noise reduction"<<std::endl;
     std::cout<<"* => low frequency luminance to be reduced (luminance range compression)"<<std::endl;
     std::cout<<"* => local logarithmic luminance compression allows details to be enhanced in low light conditions\n"<<std::endl;
     std::cout<<"* for more information, reer to the following papers :"<<std::endl;
     std::cout<<"* Benoit A., Caplier A., Durette B., Herault, J., \"USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING\", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011"<<std::endl;
     std::cout<<"* Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891."<<std::endl;
     std::cout<<"* => reports comments/remarks at [email protected]"<<std::endl;
     std::cout<<"* => more informations and papers at : http://sites.google.com/site/benoitalexandrevision/"<<std::endl;
     std::cout<<"*********************************************************************************"<<std::endl;
     std::cout<<"** WARNING : this sample requires OpenCV to be configured with OpenEXR support **"<<std::endl;
     std::cout<<"*********************************************************************************"<<std::endl;
     std::cout<<"*** You can use free tools to generate OpenEXR images from images sets   :    ***"<<std::endl;
     std::cout<<"*** =>  1. take a set of photos from the same viewpoint using bracketing      ***"<<std::endl;
     std::cout<<"*** =>  2. generate an OpenEXR image with tools like qtpfsgui.sourceforge.net ***"<<std::endl;
     std::cout<<"*** =>  3. apply tone mapping with this program                               ***"<<std::endl;
     std::cout<<"*********************************************************************************"<<std::endl;

     // basic input arguments checking
     if (argc<4)
     {
         help("bad number of parameter");
         return -1;
     }

     bool useLogSampling = !strcmp(argv[argc-1], "log"); // check if user wants retina log sampling processing

     int startFrameIndex=0, endFrameIndex=0, currentFrameIndex=0;
     sscanf(argv[2], "%d", &startFrameIndex);
     sscanf(argv[3], "%d", &endFrameIndex);
     std::string inputImageNamePrototype(argv[1]);

     //////////////////////////////////////////////////////////////////////////////
     // checking input media type (still image, video file, live video acquisition)
     std::cout<<"RetinaDemo: setting up system with first image..."<<std::endl;
     loadNewFrame(inputImageNamePrototype, startFrameIndex, true);

     if (inputImage.empty())
     {
        help("could not load image, program end");
            return -1;
         }

     //////////////////////////////////////////////////////////////////////////////
     // Program start in a try/catch safety context (Retina may throw errors)
     try
     {
         /* create a retina instance with default parameters setup, uncomment the initialisation you wanna test
          * -> if the last parameter is 'log', then activate log sampling (favour foveal vision and subsamples peripheral vision)
          */
         if (useLogSampling)
                {
                     retina = cv::bioinspired::createRetina(inputImage.size(),true, cv::bioinspired::RETINA_COLOR_BAYER, true, 2.0, 10.0);
                 }
         else// -> else allocate "classical" retina :
             retina = cv::bioinspired::createRetina(inputImage.size());

        // save default retina parameters file in order to let you see this and maybe modify it and reload using method "setup"
        retina->write("RetinaDefaultParameters.xml");

                 // desactivate Magnocellular pathway processing (motion information extraction) since it is not usefull here
                 retina->activateMovingContoursProcessing(false);

         // declare retina output buffers
         cv::Mat retinaOutput_parvo;

         /////////////////////////////////////////////
         // prepare displays and interactions
         histogramClippingValue=0; // default value... updated with interface slider

         std::string retinaInputCorrected("Retina input image (with cut edges histogram for basic pixels error avoidance)");
         cv::namedWindow(retinaInputCorrected,1);
         cv::createTrackbar("histogram edges clipping limit", "Retina input image (with cut edges histogram for basic pixels error avoidance)",&histogramClippingValue,50,callBack_rescaleGrayLevelMat);

         std::string RetinaParvoWindow("Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping");
         cv::namedWindow(RetinaParvoWindow, 1);
         colorSaturationFactor=3;
         cv::createTrackbar("Color saturation", "Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", &colorSaturationFactor,5,callback_saturateColors);

         retinaHcellsGain=40;
         cv::createTrackbar("Hcells gain", "Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping",&retinaHcellsGain,100,callBack_updateRetinaParams);

         localAdaptation_photoreceptors=197;
         localAdaptation_Gcells=190;
         cv::createTrackbar("Ph sensitivity", "Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", &localAdaptation_photoreceptors,199,callBack_updateRetinaParams);
         cv::createTrackbar("Gcells sensitivity", "Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping", &localAdaptation_Gcells,199,callBack_updateRetinaParams);

        std::string powerTransformedInput("EXR image with basic processing : 16bits=>8bits with gamma correction");

         /////////////////////////////////////////////
         // apply default parameters of user interaction variables
         callBack_updateRetinaParams(1,NULL); // first call for default parameters setup
//.........这里部分代码省略.........
开发者ID:23pointsNorth,项目名称:opencv_contrib,代码行数:101,代码来源:OpenEXRimages_HDR_Retina_toneMapping_video.cpp

示例10: processImage

void processImage(cv::Mat& image) {
    if (image.empty())
        return;

#ifdef _OPENCV3
    pMOG->apply(image, fgMaskMOG, 0.05);
#else
    pMOG->operator()(image, fgMaskMOG, 0.05);
#endif
    cv::dilate(fgMaskMOG,fgMaskMOG,cv::getStructuringElement(cv::MORPH_ELLIPSE,cv::Size(15,15)));

    bin = new IplImage(fgMaskMOG);
    frame = new IplImage(image);
    labelImg = cvCreateImage(cvSize(image.cols,image.rows),IPL_DEPTH_LABEL,1);

    unsigned int result = cvLabel(bin, labelImg, blobs);
    cvRenderBlobs(labelImg, blobs, frame, frame, CV_BLOB_RENDER_BOUNDING_BOX|CV_BLOB_RENDER_CENTROID|CV_BLOB_RENDER_ANGLE);
    cvFilterByArea(blobs, 1500, 40000);
    cvUpdateTracks(blobs, tracks, 200., 5);
    cvRenderTracks(tracks, frame, frame, CV_TRACK_RENDER_ID);

    for (std::map<CvID, CvTrack*>::iterator track_it = tracks.begin(); track_it!=tracks.end(); track_it++) {
        CvID id = (*track_it).first;
        CvTrack* track = (*track_it).second;
        cur_pos = track->centroid;

        if (track->inactive == 0) {
            if (last_poses.count(id)) {
                std::map<CvID, CvPoint2D64f>::iterator pose_it = last_poses.find(id);
                last_pos = pose_it -> second;
                last_poses.erase(pose_it);
            }
            last_poses.insert(std::pair<CvID, CvPoint2D64f>(id, cur_pos));
            if (line_pos+25>cur_pos.y && cur_pos.y>line_pos && line_pos-25<last_pos.y && last_pos.y<line_pos) {
                count++;
                countUD++;
            }
            if (line_pos-25<cur_pos.y && cur_pos.y<line_pos && line_pos+25>last_pos.y && last_pos.y>line_pos) {
                count++;
                countDU++;
            }

            if ( cur_pos.y<line_pos+50 && cur_pos.y>line_pos-50) {
                avg_vel += abs(cur_pos.y-last_pos.y);
                count_active++;
            }

            //update heatmapfg
            heat_mapfg = cv::Mat::zeros(FR_H, FR_W, CV_8UC3);
            count_arr[lmindex] = count;
            avg_vel_arr[lmindex] = avg_vel/count_active ;
            for (int i=0; i<landmarks.size(); i++) {
                cv::circle(heat_mapfg, cv::Point((landmarks[i].y + 50)*2.4, (landmarks[i].x + 50)*2.4), count_arr[i]*3, cv::Scalar(0, 16*avg_vel_arr[i], 255 - 16*avg_vel_arr[i]), -1);
            }
            cv::GaussianBlur(heat_mapfg, heat_mapfg, cv::Size(15, 15), 5);
        } else {
            if (last_poses.count(id)) {
                last_poses.erase(last_poses.find(id));
            }
        }
    }

    cv::line(image, cv::Point(0, line_pos), cv::Point(FR_W, line_pos), cv::Scalar(0,255,0),2);
    cv::putText(image, "COUNT: "+to_string(count), cv::Point(10, 15), cv::FONT_HERSHEY_PLAIN, 1, cv::Scalar(255,255,255));
    cv::putText(image, "UP->DOWN: "+to_string(countUD), cv::Point(10, 30), cv::FONT_HERSHEY_PLAIN, 1, cv::Scalar(255,255,255));
    cv::putText(image, "DOWN->UP: "+to_string(countDU), cv::Point(10, 45), cv::FONT_HERSHEY_PLAIN, 1, cv::Scalar(255,255,255));
    cv::imshow("BLOBS", image);
    cv::imshow("HEATMAP", heat_map + heat_mapfg);
    cv::waitKey(33);
}
开发者ID:rlangdon95,项目名称:JdeRobot,代码行数:70,代码来源:vehicleCounter.cpp

示例11: detectAndTrackFace

void CHumanTracker::detectAndTrackFace()
{
    static ros::Time probe;

	// Do ROI
	debugFrame = rawFrame.clone();
	Mat img =  this->rawFrame(searchROI);

	faces.clear();
	ostringstream txtstr;
    const static Scalar colors[] =  { CV_RGB(0,0,255),
        CV_RGB(0,128,255),
        CV_RGB(0,255,255),
        CV_RGB(0,255,0),
        CV_RGB(255,128,0),
        CV_RGB(255,255,0),
        CV_RGB(255,0,0),
        CV_RGB(255,0,255)} ;
    Mat gray;
    Mat frame( cvRound(img.rows), cvRound(img.cols), CV_8UC1 );
    cvtColor( img, gray, CV_BGR2GRAY );
    resize( gray, frame, frame.size(), 0, 0, INTER_LINEAR );
    //equalizeHist( frame, frame );

	// This if for internal usage
    const ros::Time _n = ros::Time::now();
	double dt = (_n - probe).toSec();
	probe = _n;


	CvMat _image = frame;

    if (!storage.empty())
    {
        cvClearMemStorage(storage);
    }
    CvSeq* _objects = cvHaarDetectObjects(&_image, cascade, storage,
			1.2, initialScoreMin, CV_HAAR_DO_CANNY_PRUNING|CV_HAAR_SCALE_IMAGE, minFaceSize, maxFaceSize);

	vector<CvAvgComp> vecAvgComp;
	Seq<CvAvgComp>(_objects).copyTo(vecAvgComp);

	// End of using C API

	isFaceInCurrentFrame = (vecAvgComp.size() > 0);

    // This is a hack
    bool isProfileFace = false;
    if ((profileHackEnabled) && (!isFaceInCurrentFrame) && ((trackingState == STATE_REJECT) || (trackingState == STATE_REJECT)))
    {
        ROS_DEBUG("Using Profile Face hack ...");

        if (!storageProfile.empty()) {
            cvClearMemStorage(storageProfile);
        }
        CvSeq* _objectsProfile = cvHaarDetectObjects(&_image, cascadeProfile, storageProfile,
                1.2, initialScoreMin, CV_HAAR_DO_CANNY_PRUNING|CV_HAAR_SCALE_IMAGE, minFaceSize, maxFaceSize);
        vecAvgComp.clear();
        Seq<CvAvgComp>(_objectsProfile).copyTo(vecAvgComp);
        isFaceInCurrentFrame = (vecAvgComp.size() > 0);
        if (isFaceInCurrentFrame)
        {
            ROS_DEBUG("The hack seems to work!");
        }
        isProfileFace = true;
    }

	if (trackingState == STATE_LOST)
	{
		if (isFaceInCurrentFrame)
		{
			stateCounter++;
			trackingState = STATE_DETECT;
		}
	}

	if (trackingState == STATE_DETECT)
	{
		if (isFaceInCurrentFrame)
		{
			stateCounter++;
		}
		else
		{
			stateCounter = 0;
			trackingState = STATE_LOST;
		}

		if (stateCounter > minDetectFrames)
		{
			stateCounter = 0;
			trackingState = STATE_TRACK;
		}

	}

	if (trackingState == STATE_TRACK)
	{
		if (!isFaceInCurrentFrame)
		{
//.........这里部分代码省略.........
开发者ID:pragmaticTNT,项目名称:autonomy_hri,代码行数:101,代码来源:autonomy_human.cpp

示例12: calcLocation

  cv::Point2f calcLocation(cv::Mat query_img) {

    std::vector<cv::KeyPoint> kp_query; // Keypoints of the query image
    cv::Mat des_query;
    cv::Mat query_img_gray;
    
    cv::cvtColor(query_img,
                 query_img_gray,
                 cv::COLOR_BGR2GRAY);


    detector->detectAndCompute(query_img_gray, 
                               cv::noArray(), 
                               kp_query,
                               des_query);


    std::vector< std::vector<cv::DMatch> > matches;
   
    matcher.knnMatch(des_ref, 
                     des_query, 
                     matches,
                     2);


    std::vector<cv::KeyPoint> matched_query, matched_ref, inliers_query, inliers_ref;
    std::vector<cv::DMatch> good_matches;

   //-- Localize the object
    std::vector<cv::Point2f> pts_query;
    std::vector<cv::Point2f> pts_ref;
    
  for(size_t i = 0; i < matches.size(); i++) {
    
    cv::DMatch first = matches[i][0];
    float dist_query = matches[i][0].distance;
    float dist_ref = matches[i][1].distance;
    
    if (dist_query < match_ratio * dist_ref) {
      
      matched_query.push_back(kp_query[first.queryIdx]);
      matched_ref.push_back(kp_ref[first.trainIdx]);
      
      pts_query.push_back(kp_query[first.queryIdx].pt);
      pts_ref.push_back(kp_ref[first.trainIdx].pt);
      
    }
  }


  cv::Mat mask; 

  // Homograpy
  cv::Mat homography;
  
  homography = cv::findHomography(pts_query, 
				  pts_ref,
				  cv::RANSAC,
				  5,
				  mask);


  // Input Quadilateral or Image plane coordinates
  std::vector<cv::Point2f> centers(1), centers_transformed(1);

  cv::Point2f center(query_img_gray.rows / 2,
                     query_img_gray.cols / 2);
  
  cv::Point2f center_transformed(query_img.rows / 2,
                                 query_img.cols / 2);
  
  centers[0] = center; // Workaround for using perspective transform
  
  cv::perspectiveTransform(centers,
                           centers_transformed,
                           homography);

  center_transformed = centers_transformed[0];

  return center_transformed;
  
  }
开发者ID:Pold87,项目名称:cpp-sift,代码行数:82,代码来源:estimate_kalman.cpp

示例13: reset

void AllignedFrameSource::reset()
{
    base_->reset();
}
开发者ID:Jasonliuhao,项目名称:opencv,代码行数:4,代码来源:test_superres.cpp

示例14: simpleMatching

 void simpleMatching(
         const cv::Mat& descriptors_0, const cv::Mat& descriptors_1,
         std::vector<cv::DMatch>& matches)
 {
     matcher_->match(descriptors_0, descriptors_1, matches);
 }
开发者ID:PETGreen,项目名称:effective_robotics_programming_with_ros,代码行数:6,代码来源:homography.cpp

示例15: initialize

  /*
   * Initializes annotator
   */
  TyErrorId initialize(AnnotatorContext &ctx)
  {
    outInfo("initialize");

    if(ctx.isParameterDefined("keypointDetector"))
    {
      ctx.extractValue("keypointDetector", keypointDetector);
    }
    else
    {
      outError("no keypoint detector provided!");
      return UIMA_ERR_ANNOTATOR_MISSING_INIT;
    }

    if(ctx.isParameterDefined("featureExtractor"))
    {
      ctx.extractValue("featureExtractor", featureExtractor);
    }
    else
    {
      outError("no feature extractor provided!");
      return UIMA_ERR_ANNOTATOR_MISSING_INIT;
    }

    outDebug("creating " << keypointDetector << " key points detector...");
    detector = cv::FeatureDetector::create(keypointDetector);
    if(detector.empty())
    {
      outError("creation failed!");
      return UIMA_ERR_ANNOTATOR_MISSING_INIT;
    }

#if OUT_LEVEL == OUT_LEVEL_DEBUG
    printParams(detector);
#endif
    setupAlgorithm(detector);

    outDebug("creating " << featureExtractor << " feature extractor...");
    extractor = cv::DescriptorExtractor::create(featureExtractor);
    if(extractor.empty())
    {
      outError("creation failed!");
      return UIMA_ERR_ANNOTATOR_MISSING_INIT;
    }

#if OUT_LEVEL == OUT_LEVEL_DEBUG
    printParams(extractor);
#endif
    setupAlgorithm(extractor);

    if(featureExtractor == "SIFT" || featureExtractor == "SURF")
    {
      featureType = "numerical";
    }
    else
    {
      featureType = "binary";
    }

    return UIMA_ERR_NONE;
  }
开发者ID:yazdani,项目名称:robosherlock,代码行数:64,代码来源:FeatureAnnotator.cpp


注:本文中的cv::Ptr类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。