本文整理汇总了C++中cv::Mat_::isContinuous方法的典型用法代码示例。如果您正苦于以下问题:C++ Mat_::isContinuous方法的具体用法?C++ Mat_::isContinuous怎么用?C++ Mat_::isContinuous使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cv::Mat_
的用法示例。
在下文中一共展示了Mat_::isContinuous方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: convolve
void convolve(cv::Mat_<float> &im, const int axis, const float* kernel)
{
if(axis >= im.dims)
throw std::invalid_argument("Matrix dimension is too small to convolve along this axis");
assert(im.isContinuous());
Convolver co(im.size[axis]);
unsigned long int step = im.step1(axis);
//whatever the real dimension, we fall back to a 3d situation where the axis of interest is y
//and either x or z can be of size 1
int nbplanes = 1;
for(int d=0; d<axis; ++d)
nbplanes *= im.size[d];
int planestep = im.total()/nbplanes;
//for each plane
for(int i=0; i<nbplanes; ++i)
//for each line
for(size_t j=0; j<step; ++j)
co(reinterpret_cast<float*>(im.data) + i*planestep + j, step, kernel);
}
示例2: oResult
cv::Mat tp3::convo(const cv::Mat& oImage, const cv::Mat_<float>& oKernel) {
CV_Assert(!oImage.empty() && oImage.type()==CV_8UC3 && oImage.isContinuous());
CV_Assert(!oKernel.empty() && oKernel.cols==oKernel.rows && oKernel.isContinuous());
CV_Assert(oImage.cols>oKernel.cols && oImage.rows>oKernel.rows);
cv::Mat oResult(oImage.size(),CV_32FC3);
for (int row_index = 0; row_index < oImage.rows; ++row_index)
{
for (int col_index = 0; col_index < oImage.cols; ++col_index)
{
float resultBlue = calculate_convolution(oImage, oKernel, blue, row_index, col_index) / 255;
float resultGreen = calculate_convolution(oImage, oKernel, green, row_index, col_index) / 255;
float resultRed = calculate_convolution(oImage, oKernel, red, row_index, col_index) / 255;
cv::Vec3f result = cv::Vec3f(resultBlue, resultGreen, resultRed);
oResult.at<cv::Vec3f>(row_index, col_index) = result;
}
}
return oResult;
}
示例3: invalid_argument
std::vector<float> get_spectrum_1d(const cv::Mat_<float> &im, const int axis, const bool windowing)
{
if(axis >= im.dims)
throw std::invalid_argument("Matrix dimension is too small to compute the spectrum along this axis");
assert(im.isContinuous());
Convolver co(im.size[axis]);
if(windowing)
co.set_hanning();
std::vector<float> spectrum(co.fourier_size());
std::vector<double> tot(co.fourier_size(), 0.0);
std::vector<std::complex<double> > totf(co.fourier_size(), 0.0);
unsigned long int step = im.step1(axis);
//whatever the real dimension, we fall back to a 3d situation where the axis of interest is y
//and either x or z can be of size 1
int nbplanes = 1;
for(int d=0; d<axis; ++d)
nbplanes *= im.size[d];
int planestep = im.total()/nbplanes;
//for each plane
for(int i=0; i<nbplanes; ++i)
{
//for each line
for(size_t j=0; j<step; ++j)
{
co.spectrum(reinterpret_cast<float* const>(im.data) + i*planestep + j, step, &spectrum[0]);
for(size_t u=0; u<spectrum.size(); ++u)
tot[u] += spectrum[u];
for(size_t u=0; u<spectrum.size(); ++u)
totf[u] += co.get_fourier()[u];
}
}
const double icount = 1.0 / (nbplanes * step);
for(size_t i=0; i<tot.size(); ++i)
spectrum[i] = tot[i]*icount - std::norm(totf[i]*icount);
return spectrum;
}