当前位置: 首页>>代码示例>>C++>>正文


C++ CascadeClassifier::detectMultiScale方法代码示例

本文整理汇总了C++中cv::CascadeClassifier::detectMultiScale方法的典型用法代码示例。如果您正苦于以下问题:C++ CascadeClassifier::detectMultiScale方法的具体用法?C++ CascadeClassifier::detectMultiScale怎么用?C++ CascadeClassifier::detectMultiScale使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在cv::CascadeClassifier的用法示例。


在下文中一共展示了CascadeClassifier::detectMultiScale方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: detect

void FaceDetector::detect( cv::Mat & frame )
{
    using namespace cv;

    std::vector<Rect> faces;
    Mat frame_gray;

    cvtColor( frame, frame_gray, CV_BGR2GRAY );
    equalizeHist( frame_gray, frame_gray );

    //-- Detect faces
    face_cascade_.detectMultiScale( frame_gray, faces, 1.1, 2, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30) );

    for( auto face : faces )
    {
        Point center( face.x + face.width*0.5, face.y + face.height*0.5 );
        ellipse( frame, center, Size( face.width*0.5, face.height*0.5), 0, 0, 360, Scalar( 0, 0, 255 ), 4, 8, 0 );

        Mat faceROI = frame_gray( face );
        std::vector<Rect> eyes;

        //-- In each face, detect eyes
        eyes_cascade_.detectMultiScale( faceROI, eyes, 1.1, 2, 0 |CV_HAAR_SCALE_IMAGE, Size(30, 30) );

        for( size_t j = 0; j < eyes.size(); j++ )
        {
            Point center( face.x + eyes[j].x + eyes[j].width*0.5, face.y + eyes[j].y + eyes[j].height*0.5 );
            int radius = cvRound( (eyes[j].width + eyes[j].height)*0.25 );
            circle( frame, center, radius, Scalar( 255, 0, 0 ), 4, 8, 0 );
        }
    }
}
开发者ID:michiroooo,项目名称:cppcv,代码行数:32,代码来源:main.cpp

示例2: detect

bool detect(workshop_examples::DetectFaces::Request  &req,
            workshop_examples::DetectFaces::Response &res
            )
{
    ROS_INFO_STREAM("Request: detect_all = " << (int)req.detect_all);

    if( !image_received )
    {
        return false;
    }

    cv::Mat frame_gray;
    cv::cvtColor( frame_rgb, frame_gray, CV_BGR2GRAY );
    cv::equalizeHist( frame_gray, frame_gray );

    std::vector<cv::Rect> faces;
    face_cascade.detectMultiScale( frame_gray, faces, 1.5, 2, 0|CV_HAAR_SCALE_IMAGE, cv::Size(30, 30) );

    // Fill in service response
    res.detections.type = workshop_msgs::Detections::FACE;

    for( int i = 0; i < (int)faces.size(); i++ )
    {
        sensor_msgs::RegionOfInterest det;
        det.x_offset = faces[i].x;
        det.y_offset = faces[i].y;
        det.width = faces[i].width;
        det.height = faces[i].height;
        res.detections.rects.push_back(det);
    }

    ROS_INFO_STREAM("...sending back response.");

    return true;
}
开发者ID:ZdenekM,项目名称:but_ros_workshop,代码行数:35,代码来源:face_det_service.cpp

示例3: detectLargestObject

bool AnchorPointSelector::detectLargestObject(cv::CascadeClassifier cascade, cv::Mat image, cv::Rect &largestObject, double scaleFactor, int minNeighbors, int flags, cv::Size minSize) {
	std::vector<cv::Rect> results;

	largestObject.x = 0;
	largestObject.y = 0;
	largestObject.width = 0;
	largestObject.height = 0;

	cascade.detectMultiScale(image, results, scaleFactor, minNeighbors, flags, minSize);

	// Save the largest object
	if (results.size() > 0) {
    	for(int i=0; i<results.size(); i++) {
    		cv::Rect temp = results[0];

    		if((temp.width * temp.height) > (largestObject.width*largestObject.height)) {
    			largestObject = temp;
			}
    	}

		return true;
	}

	return false;
}
开发者ID:Carlos-90,项目名称:OpenGazer,代码行数:25,代码来源:AnchorPointSelector.cpp

示例4: detect

/*
	Detects faces on an image and displays it to the screen.
*/
void detect( const cv::Mat frame, cv::CascadeClassifier face_cascade ){

	std::vector< cv::Rect > faces;
	cv::Mat frame_gray;
	
	// Create gray scale duplicate image
	cv::cvtColor( frame, frame_gray, CV_BGR2GRAY );
	
	// Run detection
	face_cascade.detectMultiScale( frame_gray, faces, 1.1, 2, 0|CV_HAAR_SCALE_IMAGE, cv::Size( 24, 24 ) );
	
	// Iterate through all detected faces
	for( int i = 0; i < faces.size(); i++ ){
		
		// Draw rectangle over each face
		cv::rectangle( 
					frame, 
					cv::Point( faces[i].x, faces[i].y ), 
					cv::Point( faces[i].x + faces[i].width, 
					faces[i].y + faces[i].height ), 
					cv::Scalar( 0, 0, 255 ), // red
					+1, 
					4 
				);
	}
	
	cv::imwrite( "output.pgm", frame ); // Save image
}
开发者ID:andrewmilo,项目名称:ComputerVision-Face-Detection,代码行数:31,代码来源:FaceDetection.cpp

示例5: grayCameraImage

void TellThatToMyCamera_v1_0App::updateExpressions (Surface cameraImage){
	cv::Mat grayCameraImage( toOcv( cameraImage, CV_8UC1 ) );   // create a grayscale copy of the input image
   	cv::equalizeHist( grayCameraImage, grayCameraImage );       // equalize the histogram for (just a little) more accuracy
    mExpressions.clear();                                       // clear out the previously deteced expressions
    mPredictions.clear();
    vector<cv::Rect> expressions;
    
    // Next is to detect the faces and iterate them, appending them to mExpressions
    mExpressionsCascade.detectMultiScale(grayCameraImage, expressions);
    
    // At this point the position of the faces has been calculated!
    // Now it's time to get the faces, make a prediction and save it for the video.
    
    cv::Mat graySq(100,100,CV_8UC1);    // gray square for assigning the proper size of the resized detected faces
    
    for(vector<cv::Rect>::const_iterator expressionIter = expressions.begin(); expressionIter != expressions.end(); ++expressionIter){
        // Get the process face by face (in case there's more than one face in the video frame image)
        Rectf expressionRect(fromOcv(*expressionIter));
        mExpressions.push_back(expressionRect);
        
        cv::Rect face_i (*expressionIter);                      // Rect with data (size and position) of the detected face
        cv::Mat face = grayCameraImage(face_i);                 // Image containing the detected face
        cv::Mat face_resized;                                   // Image for the resized version of the detected face
        cv::resize(face, face_resized, graySq.size(), 1, 1, cv::INTER_CUBIC); // resizes the image
        // cv::resize(face, face_resized, graySq.size(), 0, 0, cv::INTER_LINEAR);
        
        // Now, perform the EXPRESSION PREDICTION!!!
        int predicted = mFisherFaceRec->predict(face_resized);
        mPredictions.push_back(predicted);                      // put the corresponding label to the corresponding face
    }
}
开发者ID:ppdany,项目名称:ICP_TellThatToMyCamera,代码行数:31,代码来源:TellThatToMyCamera_v1_0App.cpp

示例6: faceDetect

void faceDetect(){
  //Detect faces
   cv::cvtColor( frame, frame_gray, CV_BGR2GRAY );
   cv::equalizeHist( frame_gray, frame_gray );
   face_cascade.detectMultiScale( frame_gray, faces, 1.1, 2, 0|CV_HAAR_SCALE_IMAGE, cv::Size(30, 30) );
  
   //for each face draws an ellipse arround and look for the red color at a distance from 
   for( i = 0; i < faces.size(); i++ )
    {
      cv::Point center( faces[i].x + faces[i].width*0.5, faces[i].y + faces[i].height*0.5 );
      cv::ellipse( frame, center, cv::Size( faces[i].width*0.5, faces[i].height*0.5), 0, 0, 360, cv::Scalar( 0, 255, 0 ), 2, 8, 0 );
      faceX = (float) faces[i].x;
      faceY = (float) faces[i].y;
     
      if( ((faceX + faceColorThresh) > (posX ) | (faceX - faceColorThresh) < (posX )) ) {
	face = true; 
	//publishing camera image
	out_msg.image    = frame; //frame
	out_msg.encoding = sensor_msgs::image_encodings::BGR8;
	msg = out_msg.toImageMsg();
	pub.publish(msg);
	ROS_FATAL("PERSON DETECTED");
	break;
      }
    }
}
开发者ID:rmolin88,项目名称:robotBrain,代码行数:26,代码来源:image_comm_pub_node2.cpp

示例7: fd_timeslice

void fd_timeslice( cv::Mat& frame_gray, cv::Mat& original, bool mFindEyes )
{
	frame_gray.copyTo(debugImage);

	//equalizeHist( frame_gray, frame_gray  );
	//cv::pow(frame_gray, CV_64F, frame_gray);
	uint64_t  start = GetTimeStamp2();
	face_cascade.detectMultiScale( frame_gray, faces, 1.015, 2, 0|CV_HAAR_SCALE_IMAGE|CV_HAAR_FIND_BIGGEST_OBJECT, cv::Size(150, 150) );
	//  findSkin(debugImage);
	uint64_t end = GetTimeStamp2();
	num_faces_present = faces.size();
		
	// extract Face : 
	if (num_faces_present) 
	{
		printf("FaceDetect() Duration = %6.2f;  faces_present=%d\n", (float)(end-start)/1000000., num_faces_present );
		//cv::flip(frame_gray, frame_gray, 1);
		start = GetTimeStamp2();
		printf("FaceRect: <%6.2f, %d>\n", faces[0].height, faces[0].width );
		
		faceROIc = original(faces[0]);
		if (mFindEyes)
			findEyes( frame_gray, faces[0] );
		  end = GetTimeStamp2();
		printf("FindEyes() Duration = %6.2f\n", (float)(end-start)/1000000. );
		imshow(face_window_name, faceROIc);
	}

	annotate_faces( original );
}
开发者ID:stenniswood,项目名称:bk_code,代码行数:30,代码来源:face_detect.cpp

示例8: detectAndDisplay

/**
 * @function detectAndDisplay
 */
void detectAndDisplay( cv::Mat frame ) {
	clock_t start,end;
	double time_taken;
	start = clock();

	std::vector<cv::Rect> faces;
	//cv::Mat frame_gray;

	std::vector<cv::Mat> rgbChannels(3);
	cv::split(frame, rgbChannels);
	cv::Mat frame_gray = rgbChannels[2];

	//cvtColor( frame, frame_gray, CV_BGR2GRAY );
	//equalizeHist( frame_gray, frame_gray );
	//cv::pow(frame_gray, CV_64F, frame_gray);

	//-- Detect faces
	//Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.
	face_cascade.detectMultiScale( frame_gray, faces, 1.1, 2, 0|CV_HAAR_SCALE_IMAGE|CV_HAAR_FIND_BIGGEST_OBJECT, cv::Size(80, 80) );

	//  findSkin(debugImage);

	for( int i = 0; i < faces.size(); i++ )
	{
		rectangle(debugImage, faces[i], 1234);
	}
	//-- Show what you got
	if (faces.size() > 0) {
		findEyes(frame_gray, faces[0]);
	}

	end = clock();
	time_taken = ((double) (end - start)) / CLOCKS_PER_SEC;
	//std::cout<<"Time taken by the detect and display function : "<<time_taken<<std::endl;
}
开发者ID:4sskick,项目名称:Eye-Tracking_robust,代码行数:38,代码来源:main.cpp

示例9: detectAndDisplay

void MainWindow::detectAndDisplay(const QImage &image){
#if 0
    std::vector<Rect> faces;
    Mat face_gray;
     cv::Mat face = QImage2cvMat(image);

    cvtColor( face, face_gray, CV_BGR2GRAY );  //rgb类型转换为灰度类型
    equalizeHist( face_gray, face_gray );   //直方图均衡化

    face_cascade.detectMultiScale( face_gray, faces, 1.1, 2, 0|CV_HAAR_SCALE_IMAGE, Size(1, 1) );

    for( int i = 0; i < faces.size(); i++ ){
        Point center( faces[i].x + faces[i].width*0.5, faces[i].y + faces[i].height*0.5 );
        ellipse( face, center, Size( faces[i].width*0.5, faces[i].height*0.5), 0, 0, 360, Scalar( 255, 0, 0), 2,7, 0 );
    }

    QImage image1 = cvMat2QImage(face);
    QPixmap pix = QPixmap::fromImage(image1.scaled(image1.width(),image1.height()));
    ui->Lab_VideoOut->setPixmap(pix);
#else
    QPixmap pix = QPixmap::fromImage(image.scaled(image.width(),image.height()));
    ui->Lab_VideoOut->setPixmap(pix);
    m_timerPlay->start();
#endif
}
开发者ID:FIshInMoon,项目名称:h264_test,代码行数:25,代码来源:mainwindow.cpp

示例10: detectEye

/**
* Function to detect human face and the eyes from an image.
*
* @param im The source image
* @param tpl Will be filled with the eye template, if detection success.
* @param rect Will be filled with the bounding box of the eye
* @return zero=failed, nonzero=success
*/
auto detectEye(cv::Mat const& im, cv::Mat & tpl, cv::Rect & rect)
{
    std::vector<cv::Rect> faces, eyes;
    face_cascade.detectMultiScale(im, faces, 1.1, 2, 0|CV_HAAR_SCALE_IMAGE, cv::Size(30,30));
    for (int i = 0; i < faces.size(); i++)
    {
        cv::Mat face = im(faces[i]);
        eye_cascade.detectMultiScale(face, eyes, 1.1, 2, 0|CV_HAAR_SCALE_IMAGE, cv::Size(20,20));
        if (eyes.size())
        {
            rect = eyes[0] + cv::Point(faces[i].x, faces[i].y);
            tpl = im(rect);
        }
    }
    return eyes.size();
}
开发者ID:sarmadm,项目名称:Eye-Tracking-1,代码行数:24,代码来源:main.cpp

示例11: detect_hand

// Analiza una imagen tratando de identificar un vehículo.
bool detect_hand(cv::Mat& frame){
	// Variables necesarias.
	float puntos_extraidos[2*stasm_NLANDMARKS];
	std::vector<cv::Rect> detecciones;
	cv::Mat gray_frame;
	int salida = false;
	
	// Preparo la imagen.
	cv::cvtColor(frame, gray_frame, cv::COLOR_BGR2GRAY);

	
	// Uso el detector sobre la imagen. Me aseguro de detectar rectángulos mayores de la mitad de la
	// imagen.
	hand_detector.detectMultiScale(
		gray_frame,
		detecciones,
		1.5,
		3,
		0|cv::CASCADE_SCALE_IMAGE,
		frame.size()/2,
		frame.size());
		
	// Si se han detectado objetos.
	if(detecciones.size() > 0){
		int mano_encontrada;
		std::cout << "Mano encontrada en "<< detecciones[0] << std::endl;
		cv::rectangle(frame, detecciones[0], cv::Scalar(0,0,255), 4);			
		
		if(!stasm_search_single(
			&mano_encontrada,
			puntos_extraidos,
			(char*)gray_frame.data,
			gray_frame.size().width,
			gray_frame.size().height,
			"path_prueba",
			"../data")){
				std::cout << "Puntos no encontrados" << std::endl;
		}
		else{
			salida = true;
			
			cv::Point2f p1, p2;
			p1 = cv::Point2f(puntos_extraidos[0],puntos_extraidos[1]);
			cv::circle(frame, p1, 1, cv::Scalar(0,255,0), 3);
			
			
			for(int i=2; i<stasm_NLANDMARKS*2; i+=2){
				p2 = cv::Point2f(puntos_extraidos[i],puntos_extraidos[i+1]);
				cv::circle(frame, p2, 1, cv::Scalar(0,255,0), 3);
				cv::line(frame, p1, p2, cv::Scalar(0,255,0));
				p1 = p2;
			}// Fin for.
		}// Fin else.	
	}// Fin if.
	
	return salida;
}//Fin 'detect_hand'.
开发者ID:FranFT,项目名称:TFG---Face-expression-recognition,代码行数:58,代码来源:main.cpp

示例12: calculateReferenceMaxDistanceAndPosition

double MainWindow::calculateReferenceMaxDistanceAndPosition(cv::VideoCapture cap,cv::CascadeClassifier frontal_face_cascade, cv::Point2d &referencePosition)
{
    // find a real face (consistent detections)
    std::vector<double> faceDistancesBuffer;
    std::vector<cv::Point2d> facePositionsBuffer;
    cv::Point2d previousPosition(0,0);
    double sumDistances = 0;
    int facesFound = 0;
    while (facesFound < 10)
    {
        cv::Mat frame;
        cap >> frame;
        cv::Mat frame_gray;
        cv::cvtColor( frame, frame_gray, cv::COLOR_BGR2GRAY );
        cv::equalizeHist( frame_gray, frame_gray );

        std::vector<cv::Rect> frontal_faces;
        frontal_face_cascade.detectMultiScale(frame_gray, frontal_faces);
        if (!frontal_faces.empty())
        {
            facesFound++;
            cv::Point2d currentPosition(frontal_faces[0].x,frontal_faces[0].y);
            facePositionsBuffer.push_back(currentPosition);
            double distance = cv::norm(cv::Mat(previousPosition),cv::Mat(currentPosition));
            sumDistances += distance;
            faceDistancesBuffer.push_back(distance);
            previousPosition = currentPosition;

            rectangle(frame,frontal_faces[0],cv::Scalar(0,255,0));
        }
        QImage image = QImage((const uchar *)frame.data, frame.cols, frame.rows, QImage::Format_RGB888).rgbSwapped();
        ui->imageDisplay->setPixmap(QPixmap::fromImage(image));
        qApp->processEvents();
    }

    double averageDistance = sumDistances/faceDistancesBuffer.size();

    int countDistancesNoOutliers = 0;
    double sumDistancesNoOutliers = 0;
    for (unsigned int i = 0; i < faceDistancesBuffer.size(); i++)
    {
        if (faceDistancesBuffer[i] < 2*averageDistance)
        {
            countDistancesNoOutliers++;
            sumDistancesNoOutliers += faceDistancesBuffer[i];
            if (i<facePositionsBuffer.size())
            {
                referencePosition = facePositionsBuffer[i];
            }
        }
    }

    double goundTruthMaxDistance = 4*(sumDistancesNoOutliers/countDistancesNoOutliers);
    return goundTruthMaxDistance;
}
开发者ID:jdsgomes,项目名称:cvplayground,代码行数:55,代码来源:mainwindow.cpp

示例13: detectAndDisplay

/**
 * @function detectAndDisplay
 */
int detectAndDisplay( cv::Mat frame ) {
  std::vector<cv::Rect> faces;
  //cv::Mat frame_gray;

  std::vector<cv::Mat> rgbChannels(3);
  cv::split(frame, rgbChannels);
  cv::Mat frame_gray = rgbChannels[2];
  face_cascade.detectMultiScale( frame_gray, faces, 1.1, 2, 0|CV_HAAR_SCALE_IMAGE|CV_HAAR_FIND_BIGGEST_OBJECT, cv::Size(150, 150) );
//  findSkin(debugImage);

  for( int i = 0; i < faces.size(); i++ )
  {
    rectangle(debugImage, faces[i], 1234);
  }
  //-- Show what you got
  if (faces.size() > 0) {
    findEyes(frame_gray, faces[0]);
      
      if (frame_gray.data) {
          frame_gray.convertTo(frame_gray, CV_32FC1);
          cv::Mat target = CropFace(frame_gray,leftPupil, rightPupil, offset_pct, dest_sz);
          
          if (errorflag) {
              return -1;
          }
          if (target.data) {
              
              target.convertTo(target, CV_8UC1);

              equalizeHist(target,target);
              
              target.convertTo(target, CV_32FC1);
              
              int index = query(target,ef); 
              index+= startnum;
              
              char temp[3];
              sprintf(temp, "%d", index);
              
              std::string s(temp);
              std::cout << "face recognized, index : " << index << std::endl;
              
              //    imshow("target", ef.norm_0_255(target).reshape(1, dest_sz.x));
              imshow("result"+s,  ef.getdb()[index-startnum]);
              waitKey(0);
              destroyWindow("result"+s);
              return index;
              
          }
      }
  }
    return -1;
    
}
开发者ID:Victor0118,项目名称:Computer-Vision-PG,代码行数:57,代码来源:main2.cpp

示例14: updateFaces

void ocvFaceDetectApp::updateFaces( Surface cameraImage )
{
	const int calcScale = 2; // calculate the image at half scale

	// create a grayscale copy of the input image
	cv::Mat grayCameraImage( toOcv( cameraImage, CV_8UC1 ) );

	// scale it to half size, as dictated by the calcScale constant
	int scaledWidth = cameraImage.getWidth() / calcScale;
	int scaledHeight = cameraImage.getHeight() / calcScale; 
	cv::Mat smallImg( scaledHeight, scaledWidth, CV_8UC1 );
	cv::resize( grayCameraImage, smallImg, smallImg.size(), 0, 0, cv::INTER_LINEAR );
	
	// equalize the histogram
	cv::equalizeHist( smallImg, smallImg );

	// clear out the previously deteced faces & eyes
	mFaces.clear();
	mEyes.clear();

	// detect the faces and iterate them, appending them to mFaces
	vector<cv::Rect> faces;
	mFaceCascade.detectMultiScale( smallImg, faces );
	for( vector<cv::Rect>::const_iterator faceIter = faces.begin(); faceIter != faces.end(); ++faceIter ) {
		Rectf faceRect( fromOcv( *faceIter ) );
		faceRect *= calcScale;
		mFaces.push_back( faceRect );
		
		// detect eyes within this face and iterate them, appending them to mEyes
		vector<cv::Rect> eyes;
		mEyeCascade.detectMultiScale( smallImg( *faceIter ), eyes );
		for( vector<cv::Rect>::const_iterator eyeIter = eyes.begin(); eyeIter != eyes.end(); ++eyeIter ) {
			Rectf eyeRect( fromOcv( *eyeIter ) );
			eyeRect = eyeRect * calcScale + faceRect.getUpperLeft();
			mEyes.push_back( eyeRect );
		}
	}
}
开发者ID:CFC-Media-Lab,项目名称:unification,代码行数:38,代码来源:ocvFaceDetectApp.cpp

示例15: detectObjects

void detectObjects(const cv::Mat &img, cv::CascadeClassifier &cascade, std::vector<cv::Rect> &objects, int scaledWidth, int flags, Size minFeatureSize, float searchScaleFactor, int minNeighbors)
{
    cv::Mat gray;
    if (img.channels() == 3) {
        cvtColor(img, gray, CV_BGR2GRAY);
    }
    else if (img.channels() == 4) {
        cvtColor(img, gray, CV_BGRA2GRAY);
    }
    else {
        gray = img;
    }

    cv::Mat inputImg;
    float scale = img.cols / (float)scaledWidth;
    if (img.cols > scaledWidth) {
        int scaledHeight = cvRound(img.rows / scale);
        cv::resize(gray, inputImg, cv::Size(scaledWidth, scaledHeight));
        inputImg = gray;
    }
    else {
        inputImg = gray;
    }

    cv::Mat equalizedImg;
    cv::equalizeHist(inputImg, equalizedImg);

    cascade.detectMultiScale(equalizedImg, objects, searchScaleFactor, minNeighbors, flags, minFeatureSize);

    if (img.cols > scaledWidth) {
        for (int i = 0; i < (int)objects.size(); i++ ) {
            objects[i].x = cvRound(objects[i].x * scale);
            objects[i].y = cvRound(objects[i].y * scale);
            objects[i].width = cvRound(objects[i].width * scale);
            objects[i].height = cvRound(objects[i].height * scale);
        }
    }

    for (int i = 0; i < (int)objects.size(); i++ ) {
        if (objects[i].x < 0)
            objects[i].x = 0;
        if (objects[i].y < 0)
            objects[i].y = 0;
        if (objects[i].x + objects[i].width > img.cols)
            objects[i].x = img.cols - objects[i].width;
        if (objects[i].y + objects[i].height > img.rows)
            objects[i].y = img.rows - objects[i].height;
    }
}
开发者ID:ctava,项目名称:go-opencv,代码行数:49,代码来源:gocv_objdetect.cpp


注:本文中的cv::CascadeClassifier::detectMultiScale方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。