本文整理汇总了C++中cv::CascadeClassifier类的典型用法代码示例。如果您正苦于以下问题:C++ CascadeClassifier类的具体用法?C++ CascadeClassifier怎么用?C++ CascadeClassifier使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了CascadeClassifier类的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: EyeSearchRect
namespace stasm
{
static cv::CascadeClassifier leye_det_g; // left eye detector
static cv::CascadeClassifier reye_det_g; // right eye detector
static cv::CascadeClassifier mouth_det_g; // mouth detector
//-----------------------------------------------------------------------------
// Return the region of the face we search for the left or right eye.
// Return rect of width=0 if eye must not be searched for (outer eyes in side views).
// We reduce false positives and save time by searching in only part of the face.
// The entire eye box must fall in this region, not just the center of the eye.
// The magic numbers below were found empirically to give good
// results in informal tests. They reduce the number of false positives
// in the forehead, eyebrows, nostrils, and mouth.
static Rect EyeSearchRect(
EYAW eyaw, // in
const Rect& facerect, // in
const bool is_right_eye) // in: true for right eye, false for left eye
{
Rect rect = facerect;
int width = facerect.width;
switch (eyaw)
{
case EYAW00: // frontal model
if (is_right_eye)
rect.x += width / 3; // don't search left third of face
rect.width -= width / 3; // or right third
rect.height = cvRound(.6 * facerect.height); // don't search lower part of face
break;
case EYAW_22: // left facing three-quarter model
if (is_right_eye) // inner eye
{
rect.x += cvRound(.4 * width);
rect.width = cvRound(.5 * width);
}
else // outer eye
{
rect.x += cvRound(.1 * width);
rect.width = cvRound(.5 * width);
}
rect.height = cvRound(.5 * facerect.height);
break;
case EYAW22: // right facing three-quarter model
if (is_right_eye) // outer eye
{
rect.x += cvRound(.4 * width);
rect.width = cvRound(.5 * width);
}
else // inner eye
{
rect.x += cvRound(.1 * width);
rect.width = cvRound(.5 * width);
}
rect.height = cvRound(.5 * facerect.height);
break;
case EYAW_45: // left facing three-quarter model
if (is_right_eye) // inner eye
{
rect.x += cvRound(.4 * width);
rect.width = cvRound(.5 * width);
rect.height = cvRound(.5 * facerect.height);
}
else // outer eye
rect.width = rect.height = 0;
break;
case EYAW45: // right facing three-quarter model
if (is_right_eye) // outer eye
rect.width = rect.height = 0;
else // inner eye
{
rect.x += cvRound(.1 * width);
rect.width = cvRound(.5 * width);
rect.height = cvRound(.5 * facerect.height);
}
break;
default:
Err("EyeSearchRect: Invalid eyaw %d", eyaw);
break;
}
rect.width = MAX(0, rect.width);
rect.height = MAX(0, rect.height);
return rect;
}
// Get adjustment for position of mouth, based on model type and eye angle.
static void MouthRectShift(
int& ixshift, // out
int& iyshift, // out
EYAW eyaw, // in
int facerect_width, // in
int facerect_height, // in
int ileft_best, // in
int iright_best, // in
const vec_Rect& leyes, // in
const vec_Rect& reyes) // in
{
double xshift = 0, yshift = 0;
//.........这里部分代码省略.........
示例2: classifierDetect
void FaceDetector::classifierDetect(cv::Mat image, std::vector<cv::Rect>& detections, cv::CascadeClassifier classifier,int flag, cv::Size size)
{
classifier.detectMultiScale(image, detections, 1.1, 2, flag, size);//, cv::Size(100,100));
}
示例3: OpenFaceDetector_
namespace stasm
{
typedef vector<DetPar> vec_DetPar;
static cv::CascadeClassifier facedet_g; // the face detector
static double BORDER_FRAC = 0.1; // fraction of image width or height
// use 0.0 for no border
//-----------------------------------------------------------------------------
void FaceDet::OpenFaceDetector_( // called by stasm_init, init face det from XML file
const char* datadir, // in: directory of face detector files
void*) // in: unused (func signature compatibility)
{
OpenDetector(facedet_g, "haarcascade_frontalface_alt2.xml", datadir);
}
// If a face is near the edge of the image, the OpenCV detectors tend to
// return a too-small face rectangle. By adding a border around the edge
// of the image we mitigate this problem.
static Image EnborderImg( // return the image with a border
int& leftborder, // out: border size in pixels
int& topborder, // out: border size in pixels
const Image& img) // io
{
Image bordered_img(img);
leftborder = cvRound(BORDER_FRAC * bordered_img.cols);
topborder = cvRound(BORDER_FRAC * bordered_img.rows);
copyMakeBorder(bordered_img, bordered_img,
topborder, topborder, leftborder, leftborder,
cv::BORDER_REPLICATE);
return bordered_img;
}
void DetectFaces( // all face rects into detpars
vec_DetPar& detpars, // out
const Image& img, // in
int minwidth) // in: as percent of img width
{
int leftborder = 0, topborder = 0; // border size in pixels
Image bordered_img(BORDER_FRAC == 0?
img: EnborderImg(leftborder, topborder, img));
// Detection results are very slightly better with equalization
// (tested on the MUCT images, which are not pre-equalized), and
// it's quick enough to equalize (roughly 10ms on a 1.6 GHz laptop).
Image equalized_img; cv::equalizeHist(bordered_img, equalized_img);
CV_Assert(minwidth >= 1 && minwidth <= 100);
int minpix = MAX(100, cvRound(img.cols * minwidth / 100.));
// the params below are accurate but slow
static const double SCALE_FACTOR = 1.1;
static const int MIN_NEIGHBORS = 3;
static const int DETECTOR_FLAGS = 0;
vec_Rect facerects = // all face rects in image
Detect(equalized_img, &facedet_g, NULL,
SCALE_FACTOR, MIN_NEIGHBORS, DETECTOR_FLAGS, minpix);
// copy face rects into the detpars vector
detpars.resize(NSIZE(facerects));
for (int i = 0; i < NSIZE(facerects); i++)
{
Rect* facerect = &facerects[i];
DetPar detpar; // detpar constructor sets all fields INVALID
// detpar.x and detpar.y is the center of the face rectangle
detpar.x = facerect->x + facerect->width / 2.;
detpar.y = facerect->y + facerect->height / 2.;
detpar.x -= leftborder; // discount the border we added earlier
detpar.y -= topborder;
detpar.width = double(facerect->width);
detpar.height = double(facerect->height);
detpar.yaw = 0; // assume face has no yaw in this version of Stasm
detpar.eyaw = EYAW00;
detpars[i] = detpar;
}
}
// order by increasing distance from left marg, and dist from top marg within that
static bool IncreasingLeftMargin( // compare predicate for std::sort
const DetPar& detpar1, // in
const DetPar& detpar2) // in
{
return 1e5 * detpar2.x + detpar2.y >
1e5 * detpar1.x + detpar1.y;
}
// order by decreasing width, and dist from the left margin within that
static bool DecreasingWidth( // compare predicate for std::sort
const DetPar& detpar1, // in
const DetPar& detpar2) // in
{
//.........这里部分代码省略.........
示例4: scanWebcam
void scanWebcam()
{
//Check that the cascade file was loaded
if(!face_cascade1.load( face_cascade_name1 ))
{
cout << "Error while loading cascade files" << endl;
}
CvCapture* capture;
cv::Mat frame;
//Connect to the video stream
capture = cvCaptureFromFile(PATH_TO_CAM);
//If the connection was successful
if(capture)
{
//Create a FaceRecognizer object that uses the Fisherfaces algorithm (also works with the eigenfaces and LBPH algorithms)
cv::Ptr<cv::FaceRecognizer> fisherfaces = cv::createFisherFaceRecognizer();
//Load the database that was previously created during the training phase
cv::FileStorage fs_fisher(PATH_TO_XML_FISHERFACES, cv::FileStorage::READ);
fisherfaces->load(fs_fisher);
//Infinite loop to detect the faces continuously
while(true)
{
//Get one picture from the videostream (The facial recognition is done on images from the video and not directly from the videostream)
frame = cvQueryFrame( capture );
cv::namedWindow("test");
//Check that one image was successfully extracted from the video
if(!frame.empty())
{
//Variables used for the id process
int predictedLabel = -1;
double predictedConfidence = 0.0;
std::vector<cv::Rect> faces; //Contains the rectangle coordinates in which the face will be included
cv::Mat frame_gray; //Grey image
cvtColor( frame, frame_gray, CV_RGB2GRAY ); //Converts the image from RGB to shades of grey
equalizeHist( frame_gray, frame_gray ); //Histogram equalization
//We perform a face detection
face_cascade1.detectMultiScale( frame_gray, faces, 1.1, 2, 0|CV_HAAR_SCALE_IMAGE, cv::Size(30, 30) );
//If at least one face was detected then we can perform an identification
for(int i=0; i<faces.size();i++)
{
//Get only (crop) the face (shades of grey)
cv::Mat croppedFace = frame_gray(cv::Rect(faces[i].x, faces[i].y, faces[i].width, faces[i].height));
//Resize the image
cv::resize(croppedFace, croppedFace, sizeOfImage);
//Start the identification
fisherfaces->predict(croppedFace, predictedLabel, predictedConfidence);
//Print the result in the console
cout << "##### ID " << predictedLabel << " confidence : " << predictedConfidence;
int id=predictedLabel;
const int THRESHOLD = 1000; //Threshold for the facial recognition. Used to make sure that the face was properly recognized.
string printedName;
cv::Point center( faces[i].x + faces[i].width*0.5, faces[i].y + faces[i].height*0.5 );
//Print the ID result on the video (it's really bad to do it this way !! A funtion should be created !)
if(id==1 && predictedConfidence>THRESHOLD)
{
printedName="Adrien";
//Print the circle around the face
ellipse( frame, center, cv::Size( faces[i].width*0.5, faces[i].height*0.5), 0, 0, 360, cv::Scalar(0,255,0), 4, 8, 0);
//Print the person's name
cv::putText(frame,printedName, center, cv::FONT_HERSHEY_SIMPLEX, 1.0f, cv::Scalar(0,255,0), 2, 8, false );
}
else if(id==2 && predictedConfidence>THRESHOLD)
{
printedName="Ofir";
ellipse( frame, center, cv::Size( faces[i].width*0.5, faces[i].height*0.5), 0, 0, 360, cv::Scalar(0,255,0), 4, 8, 0);
cv::putText(frame,printedName, center, cv::FONT_HERSHEY_SIMPLEX, 1.0f, cv::Scalar(0,255,0), 2, 8, false );
}
else if(id==3 && predictedConfidence>THRESHOLD)
{
printedName="Jeremie";
ellipse( frame, center, cv::Size( faces[i].width*0.5, faces[i].height*0.5), 0, 0, 360, cv::Scalar(0,255,0), 4, 8, 0);
cv::putText(frame,printedName, center, cv::FONT_HERSHEY_SIMPLEX, 1.0f, cv::Scalar(0,255,0), 2, 8, false );
}
else
{
printedName="UNKNOWN";
ellipse( frame, center, cv::Size( faces[i].width*0.5, faces[i].height*0.5), 0, 0, 360, cv::Scalar(0,0,255), 4, 8, 0);
cv::putText(frame,printedName, center, cv::FONT_HERSHEY_SIMPLEX, 1.0f, cv::Scalar(0,0,255), 2, 8, false );
}
}
cout << endl;
//Print each images to recreate a video
//.........这里部分代码省略.........
示例5: main
/*
* @function main
*/
int main( int argc, const char** argv ) {
// Get the mode
if (argc > 1)
{
const char *inputMode = argv[1];
if (strcmp(inputMode, "normal") == 0) {
mode = NORMAL;
} else if (strcmp(inputMode, "debug") == 0) {
mode = DEBUG;
} else if (strcmp(inputMode, "plot") == 0) {
mode = PLOT;
} else {
mode = NORMAL;
}
}
else
{
mode = NORMAL;
}
if (mode == NORMAL) {
eventHandler = EventHandler();
}
if (mode == DEBUG || mode == NORMAL) {
printf("Input Mode: %s\n", mode == NORMAL ? "normal" :
mode == DEBUG ? "debug" :
mode == PLOT ? "plot" : "none");
cv::namedWindow(main_window_name,CV_WINDOW_NORMAL);
cv::moveWindow(main_window_name, 400, 100);
cv::namedWindow(face_window_name,CV_WINDOW_NORMAL);
cv::moveWindow(face_window_name, 10, 100);
cv::namedWindow("Right Eye",CV_WINDOW_NORMAL);
cv::moveWindow("Right Eye", 10, 600);
cv::namedWindow("Left Eye",CV_WINDOW_NORMAL);
cv::moveWindow("Left Eye", 10, 800);
} else if (mode == PLOT) {
cv::namedWindow(face_window_name,CV_WINDOW_NORMAL);
cv::moveWindow(face_window_name, 400, 100);
}
cv::Mat frame;
// Load the cascades
if( !face_cascade.load( FACE_CASCADE_FILE ) ){ printf("--(!)Error loading face cascade, please change face_cascade_name in source code.\n"); return -1; };
// Read the video stream
cv::VideoCapture capture( 0 );
if( capture.isOpened() ) {
capture.set(CV_CAP_PROP_FRAME_WIDTH, 640);
capture.set(CV_CAP_PROP_FRAME_HEIGHT, 480);
capture.set(CV_CAP_PROP_FPS, 15);
capture >> frame;
while( true ) {
capture >> frame;
// mirror it
cv::flip(frame, frame, 1);
frame.copyTo(debugImage);
// Apply the classifier to the frame
if( !frame.empty() ) {
detectAndDisplay( frame );
}
else {
printf(" --(!) No captured frame -- Break!");
break;
}
if (mode == DEBUG || mode == NORMAL) {
imshow(main_window_name, debugImage);
}
if (mode == DEBUG || mode == PLOT || mode == NORMAL) {
int c = cv::waitKey(10);
if( (char)c == 'c' ) { break; }
if( (char)c == 'f' ) {
imwrite("frame.png", frame);
}
}
}
}
示例6: main
// Main function, defines the entry point for the program.
int main( int argc, char** argv )
{
cv::VideoCapture capture;
cv::Mat frame;
cascade.load(cascade_name);
// This works on a D-Link CDS-932L
const std::string videoStreamAddress = "http://192.168.1.253/nphMotionJpeg?Resolution=320x240&Quality=Standard&.mjpg";
//open the video stream and make sure it's opened
if(!capture.open(videoStreamAddress)) {
std::cout << "Error opening video stream or file" << std::endl;
return -1;
}
// Create a new named window with title: result
cvNamedWindow( "Result", 1 );
// Find if the capture is loaded successfully or not.
// If loaded succesfully, then:
// Capture from the camera.
for(;;)
{
cv::Mat gray;
for(int i=0;i<10;i++)
capture.grab();
capture >> frame;
cv::cvtColor(frame, gray, CV_BGR2GRAY);
std::vector<cv::Rect> results;
cascade.detectMultiScale(gray, results, 1.1, 3, 0);
int dx=0;
int dy=0;
for(std::vector<cv::Rect>::iterator it=results.begin();
it!=results.end();
it++)
{
cv::Rect r = *it;
std::cout << "_" << r.x << "_\t_" << r.y << "_\t" << std::endl;
dx = r.x + r.width/2;
dy = r.y + r.height/2;
}
std::stringstream ss;
ss << "wget -q -O /dev/null \"http://192.168.1.253/nphControlCamera?Width=";
ss << gray.cols;
ss << "&Height=";
ss << gray.rows;
ss << "&Direction=Direct&NewPosition.x=" << dx;
ss << "&NewPosition.y=" << dy<<"\"";
if((dx!=0)||(dy!=0))
{
std::cout << ss.str() << std::endl;
system(ss.str().c_str());
}
imshow("Result",gray);
// Wait for a while before proceeding to the next frame
if( cvWaitKey( 10 ) >= 0 )
break;
}
return 0;
}
示例7: do_work
void do_work(const sensor_msgs::ImageConstPtr& msg, const std::string input_frame_from_msg)
{
// Work on the image.
try
{
// Convert the image into something opencv can handle.
cv::Mat frame = cv_bridge::toCvShare(msg, msg->encoding)->image;
// Messages
opencv_apps::FaceArrayStamped faces_msg;
faces_msg.header = msg->header;
// Do the work
std::vector<cv::Rect> faces;
cv::Mat frame_gray;
cv::cvtColor( frame, frame_gray, cv::COLOR_BGR2GRAY );
cv::equalizeHist( frame_gray, frame_gray );
//-- Detect faces
#ifndef CV_VERSION_EPOCH
face_cascade_.detectMultiScale( frame_gray, faces, 1.1, 2, 0, cv::Size(30, 30) );
#else
face_cascade_.detectMultiScale( frame_gray, faces, 1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, cv::Size(30, 30) );
#endif
for( size_t i = 0; i < faces.size(); i++ )
{
cv::Point center( faces[i].x + faces[i].width/2, faces[i].y + faces[i].height/2 );
cv::ellipse( frame, center, cv::Size( faces[i].width/2, faces[i].height/2), 0, 0, 360, cv::Scalar( 255, 0, 255 ), 2, 8, 0 );
opencv_apps::Face face_msg;
face_msg.face.x = center.x;
face_msg.face.y = center.y;
face_msg.face.width = faces[i].width;
face_msg.face.height = faces[i].height;
cv::Mat faceROI = frame_gray( faces[i] );
std::vector<cv::Rect> eyes;
//-- In each face, detect eyes
#ifndef CV_VERSION_EPOCH
eyes_cascade_.detectMultiScale( faceROI, eyes, 1.1, 2, 0, cv::Size(30, 30) );
#else
eyes_cascade_.detectMultiScale( faceROI, eyes, 1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, cv::Size(30, 30) );
#endif
for( size_t j = 0; j < eyes.size(); j++ )
{
cv::Point eye_center( faces[i].x + eyes[j].x + eyes[j].width/2, faces[i].y + eyes[j].y + eyes[j].height/2 );
int radius = cvRound( (eyes[j].width + eyes[j].height)*0.25 );
cv::circle( frame, eye_center, radius, cv::Scalar( 255, 0, 0 ), 3, 8, 0 );
opencv_apps::Rect eye_msg;
eye_msg.x = eye_center.x;
eye_msg.y = eye_center.y;
eye_msg.width = eyes[j].width;
eye_msg.height = eyes[j].height;
face_msg.eyes.push_back(eye_msg);
}
faces_msg.faces.push_back(face_msg);
}
//-- Show what you got
if( debug_view_) {
cv::imshow( "Face detection", frame );
int c = cv::waitKey(1);
}
// Publish the image.
sensor_msgs::Image::Ptr out_img = cv_bridge::CvImage(msg->header, msg->encoding,frame).toImageMsg();
img_pub_.publish(out_img);
msg_pub_.publish(faces_msg);
}
catch (cv::Exception &e)
{
NODELET_ERROR("Image processing error: %s %s %s %i", e.err.c_str(), e.func.c_str(), e.file.c_str(), e.line);
}
prev_stamp_ = msg->header.stamp;
}
示例8: main
/**
* @function main
*/
int main( int argc, const char** argv ) {
CvCapture* capture;
cv::Mat frame;
// Load the cascades
if( !face_cascade.load( face_cascade_name ) ){ printf("--(!)Error loading\n"); return -1; };
cv::namedWindow(main_window_name,CV_WINDOW_NORMAL);
cv::moveWindow(main_window_name, 400, 100);
cv::namedWindow(face_window_name,CV_WINDOW_NORMAL);
cv::moveWindow(face_window_name, 10, 100);
cv::namedWindow("Right Eye",CV_WINDOW_NORMAL);
cv::moveWindow("Right Eye", 10, 600);
cv::namedWindow("Left Eye",CV_WINDOW_NORMAL);
cv::moveWindow("Left Eye", 100, 600);
createCornerKernels();
ellipse(skinCrCbHist, cv::Point(113, 155.6), cv::Size(23.4, 15.2),
43.0, 0.0, 360.0, cv::Scalar(255, 255, 255), -1);
cout << "press c to quit program" << endl;
// Use pre-recorded video
if (argc > 1) {
const char* path = argv[1];
capture = cvCreateFileCapture(path);
if( capture ) {
while( true ) {
frame = cvQueryFrame( capture );
frame.copyTo(debugImage);
// Apply the classifier to the frame
if( !frame.empty() ) {
detectAndDisplay( frame );
}
else {
printf(" --(!) No captured frame -- Break!");
break;
}
imshow(main_window_name,frame);
int c = cv::waitKey(1);
if( (char)c == 'c' ) { break; }
if( (char)c == 'f' ) {
imwrite("frame.png",frame);
}
}
}
releaseCornerKernels();
}
else {
// Read the video stream
capture = cvCaptureFromCAM( -1 );
if( capture ) {
while( true ) {
frame = cvQueryFrame( capture );
// mirror it
cv::flip(frame, frame, 1);
frame.copyTo(debugImage);
// Apply the classifier to the frame
if( !frame.empty() ) {
detectAndDisplay( frame );
}
else {
printf(" --(!) No captured frame -- Break!");
break;
}
imshow(main_window_name,debugImage);
int c = cv::waitKey(1);
if( (char)c == 'c' ) { break; }
if( (char)c == 'f' ) {
imwrite("frame.png",frame);
}
}
}
releaseCornerKernels();
}
return 0;
}
示例9: if
std::vector<cv::Rect> detect()
{
std::vector<cv::Rect> faces;
if (cascade.empty()) return faces;
double scale = this->scale == 0? 1.0 : this->scale;
cv::Mat image_roi = image;
cv::Mat gray, small;
int min = cvRound(smallest * 1000. * scale);
// use a region of interest to improve performance
// This idea comes from the More than Technical blog:
// http://www.morethantechnical.com/2009/08/09/near-realtime-face-detection-on-the-iphone-w-opencv-port-wcodevideo/
if ( roi.width > 0 && roi.height > 0)
{
image_roi = image(roi);
}
// use an equalized grayscale to improve detection
cv::cvtColor(image_roi, gray, CV_BGR2GRAY);
// use a smaller image to improve performance
cv::resize(gray, small, cv::Size(cvRound(gray.cols * scale), cvRound(gray.rows * scale)));
cv::equalizeHist(small, small);
// detect with OpenCV
cascade.detectMultiScale(small, faces, 1.1, 2, 0, cv::Size(min, min));
#ifdef USE_ROI
if (faces.size() == 0)
{
// clear the region of interest
roi.width = roi.height = 0;
roi.x = roi.y = 0;
}
else if (faces.size() > 0)
{
// determine the region of interest from the detected objects
int minx = width * scale;
int miny = height * scale;
int maxx, maxy = 0;
for (size_t i = 0; i < faces.size(); i++)
{
faces[i].x+= roi.x * scale;
faces[i].y+= roi.y * scale;
minx = MIN(faces[i].x, minx);
miny = MIN(faces[i].y, miny);
maxx = MAX(faces[i].x + faces[i].width, maxx);
maxy= MAX(faces[i].y + faces[i].height, maxy);
}
minx= MAX(minx - PAD, 0);
miny= MAX(miny - PAD, 0);
maxx = MIN(maxx + PAD, width * scale);
maxy = MIN(maxy + PAD, height * scale);
// store the region of interest
roi.x = minx / scale;
roi.y = miny / scale;
roi.width = (maxx - minx) / scale;
roi.height = (maxy - miny) / scale;
}
#endif
return faces;
}
示例10: srcGray
/*
* Class: io_github_melvincabatuan_pedestriandetection_MainActivity
* Method: predict
* Signature: (Landroid/graphics/Bitmap;[B)V
*/
JNIEXPORT void JNICALL Java_io_github_melvincabatuan_pedestriandetection_MainActivity_predict
(JNIEnv * pEnv, jobject clazz, jobject pTarget, jbyteArray pSource){
AndroidBitmapInfo bitmapInfo;
uint32_t* bitmapContent; // Links to Bitmap content
if(AndroidBitmap_getInfo(pEnv, pTarget, &bitmapInfo) < 0) abort();
if(bitmapInfo.format != ANDROID_BITMAP_FORMAT_RGBA_8888) abort();
if(AndroidBitmap_lockPixels(pEnv, pTarget, (void**)&bitmapContent) < 0) abort();
/// Access source array data... OK
jbyte* source = (jbyte*)pEnv->GetPrimitiveArrayCritical(pSource, 0);
if (source == NULL) abort();
/// cv::Mat for YUV420sp source and output BGRA
Mat srcGray(bitmapInfo.height, bitmapInfo.width, CV_8UC1, (unsigned char *)source);
Mat mbgra(bitmapInfo.height, bitmapInfo.width, CV_8UC4, (unsigned char *)bitmapContent);
/***********************************************************************************************/
/// Native Image Processing HERE...
if(DEBUG){
LOGI("Starting native image processing...");
}
if (full_body_cascade.empty()){
t = (double)getTickCount();
sprintf( full_body_cascade_path, "%s/%s", getenv("ASSETDIR"), "visionary.net_pedestrian_cascade_web_LBP.xml");
/* Load the face cascades */
if( !full_body_cascade.load(full_body_cascade_path) ){
LOGE("Error loading cat face cascade");
abort();
};
t = 1000*((double)getTickCount() - t)/getTickFrequency();
if(DEBUG){
LOGI("Loading full body cascade took %lf milliseconds.", t);
}
}
std::vector<Rect> fbody;
//-- Detect full body
t = (double)getTickCount();
/// Detection took cat_face_cascade.detectMultiScale() time = 655.334471 ms
// cat_face_cascade.detectMultiScale( srcGray, faces, 1.1, 2 , 0 , Size(30, 30) ); // Scaling factor = 1.1; minNeighbors = 2 ; flags = 0; minimumSize = 30,30
// cat_face_cascade.detectMultiScale() time = 120.117185 ms
// cat_face_cascade.detectMultiScale( srcGray, faces, 1.2, 3 , 0 , Size(64, 64));
full_body_cascade.detectMultiScale( srcGray, fbody, 1.2, 2 , 0 , Size(14, 28)); // Size(double width, double height)
// scalingFactor parameters determine how much the classifier will be scaled up after each run.
// minNeighbors parameter specifies how many positive neighbors a positive face rectangle should have to be considered a possible match;
// when a potential face rectangle is moved a pixel and does not trigger the classifier any more, it is most likely that it’s a false positive.
// Face rectangles with fewer positive neighbors than minNeighbors are rejected.
// If minNeighbors is set to zero, all potential face rectangles are returned.
// The flags parameter is from the OpenCV 1.x API and should always be 0.
// minimumSize specifies the smallest face rectangle we’re looking for.
t = 1000*((double)getTickCount() - t)/getTickFrequency();
if(DEBUG){
LOGI("full_body_cascade.detectMultiScale() time = %lf milliseconds.", t);
}
// Iterate through all faces and detect eyes
t = (double)getTickCount();
for( size_t i = 0; i < fbody.size(); i++ )
{
Point center(fbody[i].x + fbody[i].width / 2, fbody[i].y + fbody[i].height / 2);
ellipse(srcGray, center, Size(fbody[i].width / 2, fbody[i].height / 2), 0, 0, 360, Scalar(255, 0, 255), 4, 8, 0);
}//endfor
t = 1000*((double)getTickCount() - t)/getTickFrequency();
if(DEBUG){
LOGI("Iterate through all faces and detecting eyes took %lf milliseconds.", t);
}
/// Display to Android
cvtColor(srcGray, mbgra, CV_GRAY2BGRA);
if(DEBUG){
LOGI("Successfully finished native image processing...");
}
/************************************************************************************************/
//.........这里部分代码省略.........
开发者ID:DeLaSalleUniversity-Manila,项目名称:pedestriandetection-melvincabatuan,代码行数:101,代码来源:ImageProcessing.cpp
示例11: detectAndDisplay
void detectAndDisplay(cv::Mat frame) {
std::vector<cv::Rect> faces;
cv::Mat frame_gray;
cv::cvtColor(frame, frame_gray, cv::COLOR_BGR2GRAY);
cv::equalizeHist(frame_gray, frame_gray);
// Detect Faces
face_cascade.detectMultiScale(frame_gray, // image
faces, // objects
1.1, // scale factor
2, // min neighbors
0|cv::CASCADE_SCALE_IMAGE, // flags
cv::Size(30, 30)); // min size
for (std::size_t i = 0; i < faces.size(); i++) {
cv::Point center(faces[i].x + faces[i].width/2,
faces[i].y + faces[i].height/2);
cv::ellipse(frame,
center,
cv::Size(faces[i].width/2, faces[i].height/2),
0,
0,
360,
cv::Scalar(255, 0, 255),
4,
8,
0);
cv::Mat faceROI = frame_gray(faces[i]);
std::vector<cv::Rect> eyes;
// in each face, detect eyes
eyes_cascade.detectMultiScale(faceROI,
eyes,
1.1,
2,
0 | cv::CASCADE_SCALE_IMAGE,
cv::Size(30, 30));
for (std::size_t j = 0; j < eyes.size(); j++) {
cv::Point eye_center(faces[i].x + eyes[j].x + eyes[j].width/2,
faces[i].y + eyes[j].y + eyes[j].height/2);
int radius = cvRound((eyes[j].width + eyes[j].height) * 0.25);
cv::circle(frame,
eye_center,
radius,
cv::Scalar(255, 0, 0),
4,
8,
0);
}
}
// Show what you got
cv::imshow(window_name, frame);
}
示例12: main
/**
* @function main
*/
int main( int argc, const char** argv ) {
srand(time(NULL)); int ra;
/* char circ_window[] = "Moving dot";
Mat circ_image = Mat::zeros( 400, 400, CV_8UC3 );
MyFilledCircle( circ_image, Point( 100, 100) );
imshow( circ_window, circ_image );
cv::setWindowProperty( circ_window, CV_WND_PROP_FULLSCREEN, CV_WINDOW_FULLSCREEN);
moveWindow( circ_window, 900, 200 );*/
//sleep(8);
CvCapture* capture;
cv::Mat frame;
// Load the cascades
if( !face_cascade.load( face_cascade_name ) ){ printf("--(!)Error loading face cascade, please change face_cascade_name in source code.\n"); return -1; };
cv::namedWindow(main_window_name,CV_WINDOW_NORMAL);
cv::moveWindow(main_window_name, 400, 100);
cv::namedWindow(face_window_name,CV_WINDOW_NORMAL);
cv::moveWindow(face_window_name, 10, 100);
cv::namedWindow("Right Eye",CV_WINDOW_NORMAL);
cv::moveWindow("Right Eye", 10, 600);
cv::namedWindow("Left Eye",CV_WINDOW_NORMAL);
cv::moveWindow("Left Eye", 10, 800);
cv::namedWindow("aa",CV_WINDOW_NORMAL);
cv::moveWindow("aa", 10, 800);
cv::namedWindow("aaa",CV_WINDOW_NORMAL);
cv::moveWindow("aaa", 10, 800);
createCornerKernels();
ellipse(skinCrCbHist, cv::Point(113, 155.6), cv::Size(23.4, 15.2),
43.0, 0.0, 360.0, cv::Scalar(255, 255, 255), -1);
// Read the video stream
capture = cvCaptureFromCAM( -1 );
if( capture ) {
while( true ) {
char circ_window[] = "Moving dot";
Mat circ_image = Mat::zeros( 414, 414, CV_8UC3 );
//ra = rand()%4;
//if (ra==1) rx+=1; else if(ra==2) rx-=1; else if(ra==3) ry+=1; else ry-=1; rx+=1; if(rx==500) rx=0;
if(stage1 && !stage2)
if(rx>=6 && rx <=400 && ry==6)
{
rx+= 10;
tl+= lpy;
tr+= rpy;
countert ++;
}
else if(rx>=400 && ry<400)
{
ry+=10;
rl+= lpx;
rr+= rpx;
counterl ++;
}
else if(ry>=400 && rx > 6)
{
rx-=10;
bl+= lpy;
br+= rpy;
}
else if(rx<=6 && ry>20)
{
ry-=10;
ll+= lpx;
lr+= rpx;
}
else if(rx <= 6 && ry <= 20 && ry > 6)
{
stage1 = 0;
stage2 = 1;
}
if(!stage1 && stage2)
{
tal = tl / countert;
tar = tr / countert;
bar = br / countert;
bal = bl / countert;
lal = ll / (counterl-1);
lar = lr / (counterl-1);
ral = rl / counterl;
rar = rr / counterl;
std::cout<<tal<<" : "<<tar<<" : "<<lal<<" : "<<lar<<std::endl;
std::cout<<ral<<" : "<<rar<<" : "<<bal<<" : "<<bar<<std::endl;
stage2 = 0;
rx=200;ry=200;
}
if(!stage1 && !stage2)
{
//.........这里部分代码省略.........
示例13: main
int main(int argc, char** argv)
{
// Load the cascade classifiers
// Make sure you point the XML files to the right path, or
// just copy the files from [OPENCV_DIR]/data/haarcascades directory
face_cascade.load("haarcascade_frontalface_alt2.xml");
eye_cascade.load("haarcascade_eye.xml");
std::cout << "==================\n";
// Open webcam
cv::VideoCapture cap(0);
// Check if everything is ok
if (face_cascade.empty() || eye_cascade.empty() || !cap.isOpened())
{
std::cout << "bad\n";
return 1;
}
cap.set(CV_CAP_PROP_FRAME_WIDTH, WIDTH);
cap.set(CV_CAP_PROP_FRAME_HEIGHT, HEIGHT);
cv::Mat frame, eye_tpl;
cv::Rect eye_bb;
while (cv::waitKey(15) != 'q' && cv::waitKey(15) != 'Q')
{
cap >> frame;
if (frame.empty()) break;
// Flip the frame horizontally, Windows users might need this
cv::flip(frame, frame, 1);
// Convert to greyscale and
// adjust the image contrast using histogram equalization
cv::Mat gray;
cv::cvtColor(frame, gray, CV_BGR2GRAY);
if (eye_bb.width == 0 && eye_bb.height == 0)
{
// Detection stage
// Try to detect the face and the eye of the user
detectEye(gray, eye_tpl, eye_bb);
}
else
{
// Tracking stage with template matching
trackEye(gray, eye_tpl, eye_bb);
// Draw bounding rectangle for the eye
cv::rectangle(frame, eye_bb, CV_RGB(0,255,0));
}
{//drawing grids
struct Line { cv::Point from, to; };
using Lines = std::vector<Line>;
Lines lines{
{ { 213, 0 }, { 213, 480 } },
{ { 427, 0 }, { 427, 480 } },
{ { 0, 160 }, { 640, 160 } },
{ { 0, 320 }, { 640, 320 } }
};
for (auto const& l : lines)
cv::line(frame,l.from, l.to, CV_RGB(0,255,0), 1, 1);
}
{//generate direction command
std::vector<cv::Rect> direction_boxes{
cv::Rect{cv::Point{213, 0}, cv::Point{427, 160}}, //F
cv::Rect{cv::Point{ 0, 160}, cv::Point{213, 320}}, //L
cv::Rect{cv::Point{427, 160}, cv::Point{640, 320}} //R
};
auto draw_direction = [&](std::string const &direction) {
cv::putText(frame, direction, cv::Point{280, 435}, cv::FONT_HERSHEY_DUPLEX, 3, CV_RGB(70, 130, 180), 5);
cv::putText(frame, direction, cv::Point{280, 435}, cv::FONT_HERSHEY_DUPLEX, 3, CV_RGB(102, 105, 170), 4);
};
for(int box = 0; box != 3; ++box)
{
if (box == 0)
if (direction_boxes[0].contains(center_of_rect(eye_bb)))
{
draw_direction("F");
break;
}
if (box == 1)
if (direction_boxes[1].contains(center_of_rect(eye_bb)))
{
draw_direction("L");
break;
}
if (box == 2)
if (direction_boxes[2].contains(center_of_rect(eye_bb)))
{
draw_direction("R");
break;
}
}
std::cout << center_of_rect(eye_bb).x << std::endl;
}
cv::imshow("video", frame);
}
return 0;
//.........这里部分代码省略.........