本文整理汇总了C++中clang::QualType::getPointeeType方法的典型用法代码示例。如果您正苦于以下问题:C++ QualType::getPointeeType方法的具体用法?C++ QualType::getPointeeType怎么用?C++ QualType::getPointeeType使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类clang::QualType
的用法示例。
在下文中一共展示了QualType::getPointeeType方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: roughlyEqual
// A loose type equality check that disregards all sugar, qualification, looks
// through pointers, etc.
static bool roughlyEqual(clang::QualType left, clang::QualType right) {
auto leftPointee = left->getPointeeType();
if (leftPointee != clang::QualType())
left = leftPointee;
auto rightPointee = right->getPointeeType();
if (rightPointee != clang::QualType())
right = rightPointee;
return left->getUnqualifiedDesugaredType() ==
right->getUnqualifiedDesugaredType();
}
示例2: reportTypeMismatch
/**
* Reports mismatch between buffer type and mpi datatype.
* @param callExpr
*/
void MPIBugReporter::reportTypeMismatch(
const CallExpr *callExpr, const std::pair<size_t, size_t> &idxPair,
clang::QualType bufferType, std::string mpiType) const {
auto adc = analysisManager_.getAnalysisDeclContext(currentFunctionDecl_);
PathDiagnosticLocation location = PathDiagnosticLocation::createBegin(
callExpr, bugReporter_.getSourceManager(), adc);
// deref buffer type
while (bufferType->isPointerType()) {
bufferType = bufferType->getPointeeType();
}
// remove qualifiers
bufferType = bufferType.getUnqualifiedType();
SourceRange callRange = callExpr->getCallee()->getSourceRange();
std::string bugType{"type mismatch"};
std::string errorText{"Buffer type '" + bufferType.getAsString() +
+"' and specified MPI type '" + mpiType +
"' do not match. "};
llvm::SmallVector<SourceRange, 3> sourceRanges;
sourceRanges.push_back(callRange);
sourceRanges.push_back(callExpr->getArg(idxPair.first)->getSourceRange());
sourceRanges.push_back(callExpr->getArg(idxPair.second)->getSourceRange());
bugReporter_.EmitBasicReport(adc->getDecl(), &checkerBase_, bugType,
MPIError, errorText, location, sourceRanges);
}
示例3: Init
void ValuePrinterInfo::Init(clang::QualType Ty) {
assert(!Ty.isNull() && "Type must be valid!");
assert(m_Context && "ASTContext cannot be null!");
assert(sizeof(m_Type) >= sizeof(clang::QualType) && "m_Type too small!");
m_Type = *reinterpret_cast<void**>(&Ty);
// 1. Get the flags
if (Ty.isLocalConstQualified() || Ty.isConstant(*m_Context)){
m_Flags |= VPI_Const;
}
if (Ty->isPointerType()) {
// treat arrary-to-pointer decay as array:
QualType PQT = Ty->getPointeeType();
const Type* PTT = PQT.getTypePtr();
if (!PTT || !PTT->isArrayType()) {
m_Flags |= VPI_Ptr;
if (const RecordType* RT = dyn_cast<RecordType>(Ty.getTypePtr()))
if (RecordDecl* RD = RT->getDecl()) {
CXXRecordDecl* CRD = dyn_cast<CXXRecordDecl>(RD);
if (CRD && CRD->isPolymorphic())
m_Flags |= VPI_Polymorphic;
}
}
}
}
示例4: checkPointeeConstQualified
// updates S.Ok; and, depending on Kind, possibly S.FnAccumulatorOk or S.FnOutConverterOk
void RSExportReduce::checkPointeeConstQualified(StateOfAnalyzeTranslationUnit &S,
FnIdent Kind, const llvm::StringRef &Name,
const clang::ParmVarDecl *Param, bool ExpectedQualification) {
const clang::QualType ParamQType = Param->getType();
slangAssert(ParamQType->isPointerType());
const clang::QualType PointeeQType = ParamQType->getPointeeType();
if (PointeeQType.isConstQualified() != ExpectedQualification) {
S.RSC.ReportError(Param->getLocation(),
"%0 parameter '%1' (type '%2') must%3 point to const-qualified type")
<< S.DiagnosticDescription(getKey(Kind), Name)
<< Param->getName() << ParamQType.getAsString()
<< (ExpectedQualification ? "" : " not");
notOk(S, Kind);
}
}
示例5: StreamValue
static void StreamValue(llvm::raw_ostream& o, const void* V,
clang::QualType Ty, cling::Interpreter& Interp) {
clang::ASTContext& C = Interp.getCI()->getASTContext();
if (const clang::BuiltinType *BT
= llvm::dyn_cast<clang::BuiltinType>(Ty.getCanonicalType())) {
switch (BT->getKind()) {
case clang::BuiltinType::Bool:
if (*(const bool*)V)
o << "true";
else
o << "false";
break;
case clang::BuiltinType::Char_U: // intentional fall through
case clang::BuiltinType::UChar: // intentional fall through
case clang::BuiltinType::Char_S: // intentional fall through
case clang::BuiltinType::SChar:
StreamChar(o, *(const char*)V); break;
case clang::BuiltinType::Short:
o << *(const short*)V; break;
case clang::BuiltinType::UShort:
o << *(const unsigned short*)V; break;
case clang::BuiltinType::Int:
o << *(const int*)V; break;
case clang::BuiltinType::UInt:
o << *(const unsigned int*)V; break;
case clang::BuiltinType::Long:
o << *(const long*)V; break;
case clang::BuiltinType::ULong:
o << *(const unsigned long*)V; break;
case clang::BuiltinType::LongLong:
o << *(const long long*)V; break;
case clang::BuiltinType::ULongLong:
o << *(const unsigned long long*)V; break;
case clang::BuiltinType::Float:
o << *(const float*)V; break;
case clang::BuiltinType::Double:
o << *(const double*)V; break;
case clang::BuiltinType::LongDouble: {
std::stringstream ssLD;
ssLD << *(const long double*)V;
o << ssLD.str() << 'L'; break;
}
default:
StreamObj(o, V, Ty);
}
}
else if (Ty.getAsString().compare("std::string") == 0) {
StreamObj(o, V, Ty);
o << " "; // force a space
o <<"c_str: ";
StreamCharPtr(o, ((const char*) (*(const std::string*)V).c_str()));
}
else if (Ty->isEnumeralType()) {
clang::EnumDecl* ED = Ty->getAs<clang::EnumType>()->getDecl();
uint64_t value = *(const uint64_t*)V;
bool IsFirst = true;
llvm::APSInt ValAsAPSInt = C.MakeIntValue(value, Ty);
for (clang::EnumDecl::enumerator_iterator I = ED->enumerator_begin(),
E = ED->enumerator_end(); I != E; ++I) {
if (I->getInitVal() == ValAsAPSInt) {
if (!IsFirst) {
o << " ? ";
}
o << "(" << I->getQualifiedNameAsString() << ")";
IsFirst = false;
}
}
o << " : (int) " << ValAsAPSInt.toString(/*Radix = */10);
}
else if (Ty->isReferenceType())
StreamRef(o, (const void**)&V, Ty, Interp);
else if (Ty->isPointerType()) {
clang::QualType PointeeTy = Ty->getPointeeType();
if (PointeeTy->isCharType())
StreamCharPtr(o, (const char*)V);
else if (PointeeTy->isFunctionProtoType())
StreamFunction(o, V, PointeeTy, Interp);
else
StreamPtr(o, V);
}
else if (Ty->isArrayType())
StreamArr(o, V, Ty, Interp);
else if (Ty->isFunctionType())
StreamFunction(o, V, Ty, Interp);
else
StreamObj(o, V, Ty);
}
示例6: analyzeHalter
// Process "bool haltername(const compType *accum)"
void RSExportReduce::analyzeHalter(StateOfAnalyzeTranslationUnit &S) {
if (!S.FnHalter) // halter is always optional
return;
// Must return bool
const clang::QualType ReturnTy = S.FnHalter->getReturnType().getCanonicalType();
if (!ReturnTy->isBooleanType()) {
S.RSC.ReportError(S.FnHalter->getLocation(),
"%0 must return bool not '%1'")
<< S.DiagnosticDescription(KeyHalter, mNameHalter) << ReturnTy.getAsString();
S.Ok = false;
}
// Must have exactly one parameter
if (S.FnHalter->getNumParams() != 1) {
S.RSC.ReportError(S.FnHalter->getLocation(),
"%0 must take exactly 1 parameter (found %1)")
<< S.DiagnosticDescription(KeyHalter, mNameHalter)
<< S.FnHalter->getNumParams();
S.Ok = false;
return;
}
// Parameter must not be a special parameter
const clang::ParmVarDecl *const FnHalterParam = S.FnHalter->getParamDecl(0);
if (isSpecialKernelParameter(FnHalterParam->getName())) {
S.RSC.ReportError(S.FnHalter->getLocation(),
"%0 cannot take special parameter '%1'")
<< S.DiagnosticDescription(KeyHalter, mNameHalter)
<< FnHalterParam->getName();
S.Ok = false;
return;
}
// Parameter must be same type as first accumulator parameter
if (S.FnAccumulatorParamFirstTy.isNull() || !S.FnAccumulatorParamFirstTy->isPointerType()) {
// We're already in an error situation. We could compare against
// the initializer parameter type or the first combiner parameter
// type instead of the first accumulator parameter type (we'd have
// to check for the availability of a parameter type there, too),
// but it does not seem worth the effort.
slangAssert(!S.Ok);
return;
}
const clang::QualType FnHalterParamTy = FnHalterParam->getType().getCanonicalType();
if (!FnHalterParamTy->isPointerType() ||
!S.FnHalter->getASTContext().hasSameUnqualifiedType(
S.FnAccumulatorParamFirstTy->getPointeeType().getCanonicalType(),
FnHalterParamTy->getPointeeType().getCanonicalType())) {
// <halter> parameter '<baz>' (type '<tbaz>')
// and accumulator <goo>() parameter '<gaz>' (type '<tgaz>') must be pointers to the same type
S.RSC.ReportError(S.FnHalter->getLocation(),
"%0 parameter '%1' (type '%2') and %3 %4() parameter '%5' (type '%6')"
" must be pointers to the same type")
<< S.DiagnosticDescription(KeyHalter, mNameHalter)
<< FnHalterParam->getName() << FnHalterParamTy.getAsString()
<< KeyAccumulator << mNameAccumulator
<< S.FnAccumulatorParamFirst->getName() << S.FnAccumulatorParamFirstTy.getAsString();
S.Ok = false;
return;
}
// Parameter must point to const-qualified
checkPointeeConstQualified(S, FN_IDENT_HALTER, mNameHalter, FnHalterParam, true);
}
示例7: analyzeOutConverter
// Process "void outconvertname(resultType *result, const compType *accum)"
void RSExportReduce::analyzeOutConverter(StateOfAnalyzeTranslationUnit &S) {
if (!S.FnOutConverter) // outconverter is always optional
return;
// Must return void
checkVoidReturn(S, FN_IDENT_OUT_CONVERTER, S.FnOutConverter);
// Must have exactly two parameters
if (S.FnOutConverter->getNumParams() != 2) {
S.RSC.ReportError(S.FnOutConverter->getLocation(),
"%0 must take exactly 2 parameters (found %1)")
<< S.DiagnosticDescription(KeyOutConverter, mNameOutConverter)
<< S.FnOutConverter->getNumParams();
S.Ok = S.FnOutConverterOk = false;
return;
}
// Parameters must not be special and must be of pointer type;
// and second parameter must match first accumulator parameter
for (int ParamIdx = 0; ParamIdx < 2; ++ParamIdx) {
clang::ParmVarDecl *const FnOutConverterParam = S.FnOutConverter->getParamDecl(ParamIdx);
if (isSpecialKernelParameter(FnOutConverterParam->getName())) {
S.RSC.ReportError(S.FnOutConverter->getLocation(),
"%0 cannot take special parameter '%1'")
<< S.DiagnosticDescription(KeyOutConverter, mNameOutConverter)
<< FnOutConverterParam->getName();
S.Ok = S.FnOutConverterOk = false;
continue;
}
const clang::QualType FnOutConverterParamTy = FnOutConverterParam->getType().getCanonicalType();
if (!FnOutConverterParamTy->isPointerType()) {
S.RSC.ReportError(S.FnOutConverter->getLocation(),
"%0 parameter '%1' must be of pointer type not '%2'")
<< S.DiagnosticDescription(KeyOutConverter, mNameOutConverter)
<< FnOutConverterParam->getName() << FnOutConverterParamTy.getAsString();
S.Ok = S.FnOutConverterOk = false;
continue;
}
// Check const-qualification
checkPointeeConstQualified(S, FN_IDENT_OUT_CONVERTER, mNameOutConverter, FnOutConverterParam, ParamIdx==1);
if (ParamIdx == 0) {
S.FnOutConverterParamFirst = FnOutConverterParam;
S.FnOutConverterParamFirstTy = FnOutConverterParamTy;
continue;
}
if (S.FnAccumulatorParamFirstTy.isNull() || !S.FnAccumulatorParamFirstTy->isPointerType()) {
// We're already in an error situation. We could compare
// against the initializer parameter type instead of the first
// accumulator parameter type (we'd have to check for the
// availability of a parameter type there, too), but it does not
// seem worth the effort.
slangAssert(!S.Ok);
continue;
}
if (!S.FnOutConverter->getASTContext().hasSameUnqualifiedType(
S.FnAccumulatorParamFirstTy->getPointeeType().getCanonicalType(),
FnOutConverterParamTy->getPointeeType().getCanonicalType())) {
// <outconverter> parameter '<baz>' (type '<tbaz>')
// and accumulator <goo>() parameter '<gaz>' (type '<tgaz>') must be pointers to the same type
S.RSC.ReportError(S.FnOutConverter->getLocation(),
"%0 parameter '%1' (type '%2') and %3 %4() parameter '%5' (type '%6')"
" must be pointers to the same type")
<< S.DiagnosticDescription(KeyOutConverter, mNameOutConverter)
<< FnOutConverterParam->getName() << FnOutConverterParamTy.getAsString()
<< KeyAccumulator << mNameAccumulator
<< S.FnAccumulatorParamFirst->getName() << S.FnAccumulatorParamFirstTy.getAsString();
S.Ok = S.FnOutConverterOk = false;
}
}
}
示例8: analyzeCombiner
// Process "void combinename(compType *accum, const compType *val)"
void RSExportReduce::analyzeCombiner(StateOfAnalyzeTranslationUnit &S) {
if (S.FnCombiner) {
// Must return void
checkVoidReturn(S, FN_IDENT_COMBINER, S.FnCombiner);
// Must have exactly two parameters, of same type as first accumulator parameter
if (S.FnCombiner->getNumParams() != 2) {
S.RSC.ReportError(S.FnCombiner->getLocation(),
"%0 must take exactly 2 parameters (found %1)")
<< S.DiagnosticDescription(KeyCombiner, mNameCombiner)
<< S.FnCombiner->getNumParams();
S.Ok = false;
return;
}
if (S.FnAccumulatorParamFirstTy.isNull() || !S.FnAccumulatorParamFirstTy->isPointerType()) {
// We're already in an error situation. We could compare
// against the initializer parameter type instead of the first
// accumulator parameter type (we'd have to check for the
// availability of a parameter type there, too), but it does not
// seem worth the effort.
//
// Likewise, we could compare the two combiner parameter types
// against each other.
slangAssert(!S.Ok);
return;
}
for (int ParamIdx = 0; ParamIdx < 2; ++ParamIdx) {
const clang::ParmVarDecl *const FnCombinerParam = S.FnCombiner->getParamDecl(ParamIdx);
const clang::QualType FnCombinerParamTy = FnCombinerParam->getType().getCanonicalType();
if (!FnCombinerParamTy->isPointerType() ||
!S.FnCombiner->getASTContext().hasSameUnqualifiedType(
S.FnAccumulatorParamFirstTy->getPointeeType().getCanonicalType(),
FnCombinerParamTy->getPointeeType().getCanonicalType())) {
// <combiner> parameter '<baz>' (type '<tbaz>')
// and accumulator <goo>() parameter '<gaz>' (type '<tgaz>') must be pointers to the same type
S.RSC.ReportError(S.FnCombiner->getLocation(),
"%0 parameter '%1' (type '%2') and %3 %4() parameter '%5' (type '%6')"
" must be pointers to the same type")
<< S.DiagnosticDescription(KeyCombiner, mNameCombiner)
<< FnCombinerParam->getName() << FnCombinerParamTy.getAsString()
<< KeyAccumulator << mNameAccumulator
<< S.FnAccumulatorParamFirst->getName() << S.FnAccumulatorParamFirstTy.getAsString();
S.Ok = false;
} else {
// Check const-qualification
checkPointeeConstQualified(S, FN_IDENT_COMBINER, mNameCombiner, FnCombinerParam, ParamIdx==1);
}
}
return;
}
// Ensure accumulator properties permit omission of combiner.
if (!S.FnAccumulatorOk) {
// Couldn't fully analyze accumulator, so cannot see whether it permits omission of combiner.
return;
}
if (mAccumulatorIns.size() != 1 ||
S.FnAccumulatorIndexOfFirstSpecialParameter != S.FnAccumulator->getNumParams())
{
S.RSC.ReportError(S.FnAccumulator->getLocation(),
"%0 must have exactly 1 input"
" and no special parameters in order for the %1 to be omitted")
<< S.DiagnosticDescription(KeyAccumulator, mNameAccumulator)
<< KeyCombiner;
S.Ok = false;
return;
}
const clang::ParmVarDecl *const FnAccumulatorParamInput = S.FnAccumulator->getParamDecl(1);
const clang::QualType FnAccumulatorParamInputTy = FnAccumulatorParamInput->getType().getCanonicalType();
if (!S.FnAccumulator->getASTContext().hasSameUnqualifiedType(
S.FnAccumulatorParamFirstTy->getPointeeType().getCanonicalType(),
FnAccumulatorParamInputTy.getCanonicalType())) {
S.RSC.ReportError(S.FnAccumulator->getLocation(),
"%0 parameter '%1' (type '%2')"
" must be pointer to the type of parameter '%3' (type '%4')"
" in order for the %5 to be omitted")
<< S.DiagnosticDescription(KeyAccumulator, mNameAccumulator)
<< S.FnAccumulatorParamFirst->getName() << S.FnAccumulatorParamFirstTy.getAsString()
<< FnAccumulatorParamInput->getName() << FnAccumulatorParamInputTy.getAsString()
<< KeyCombiner;
S.Ok = false;
}
}