本文整理汇总了C++中clang::QualType::getCanonicalType方法的典型用法代码示例。如果您正苦于以下问题:C++ QualType::getCanonicalType方法的具体用法?C++ QualType::getCanonicalType怎么用?C++ QualType::getCanonicalType使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类clang::QualType
的用法示例。
在下文中一共展示了QualType::getCanonicalType方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: IsStructuralType
bool IsStructuralType(const clang::QualType& type, const clang::ASTContext *context) {
// If it is struct, check if all fields are of structural type
if (type.getCanonicalType().getTypePtr()->isStructureType()) {
clang::RecordDecl* struct_decl = type.getCanonicalType().getTypePtr()->getAsStructureType()->getDecl();
for (const auto* field : struct_decl->fields()) {
if (!IsStructuralType(field->getType(),context))
return false;
}
return true;
} else { // Else check if it is of integral type
return type.getCanonicalType().getTypePtr()->isBuiltinType();
}
}
示例2: determineStorageType
Value::EStorageType Value::determineStorageType(clang::QualType QT) {
const clang::Type* desugCanon = QT.getCanonicalType().getTypePtr();
if (desugCanon->isSignedIntegerOrEnumerationType())
return kSignedIntegerOrEnumerationType;
else if (desugCanon->isUnsignedIntegerOrEnumerationType())
return kUnsignedIntegerOrEnumerationType;
else if (desugCanon->isRealFloatingType()) {
const clang::BuiltinType* BT = desugCanon->getAs<clang::BuiltinType>();
if (BT->getKind() == clang::BuiltinType::Double)
return kDoubleType;
else if (BT->getKind() == clang::BuiltinType::Float)
return kFloatType;
else if (BT->getKind() == clang::BuiltinType::LongDouble)
return kLongDoubleType;
} else if (desugCanon->isPointerType() || desugCanon->isObjectType()
|| desugCanon->isReferenceType()) {
if (desugCanon->isRecordType() || desugCanon->isConstantArrayType()
|| desugCanon->isMemberPointerType())
return kManagedAllocation;
return kPointerType;
}
return kUnsupportedType;
}
示例3: StreamValue
static void StreamValue(llvm::raw_ostream& o, const void* V,
clang::QualType Ty, cling::Interpreter& Interp) {
clang::ASTContext& C = Interp.getCI()->getASTContext();
if (const clang::BuiltinType *BT
= llvm::dyn_cast<clang::BuiltinType>(Ty.getCanonicalType())) {
switch (BT->getKind()) {
case clang::BuiltinType::Bool:
if (*(const bool*)V)
o << "true";
else
o << "false";
break;
case clang::BuiltinType::Char_U: // intentional fall through
case clang::BuiltinType::UChar: // intentional fall through
case clang::BuiltinType::Char_S: // intentional fall through
case clang::BuiltinType::SChar:
StreamChar(o, *(const char*)V); break;
case clang::BuiltinType::Short:
o << *(const short*)V; break;
case clang::BuiltinType::UShort:
o << *(const unsigned short*)V; break;
case clang::BuiltinType::Int:
o << *(const int*)V; break;
case clang::BuiltinType::UInt:
o << *(const unsigned int*)V; break;
case clang::BuiltinType::Long:
o << *(const long*)V; break;
case clang::BuiltinType::ULong:
o << *(const unsigned long*)V; break;
case clang::BuiltinType::LongLong:
o << *(const long long*)V; break;
case clang::BuiltinType::ULongLong:
o << *(const unsigned long long*)V; break;
case clang::BuiltinType::Float:
o << *(const float*)V; break;
case clang::BuiltinType::Double:
o << *(const double*)V; break;
case clang::BuiltinType::LongDouble: {
std::stringstream ssLD;
ssLD << *(const long double*)V;
o << ssLD.str() << 'L'; break;
}
default:
StreamObj(o, V, Ty);
}
}
else if (Ty.getAsString().compare("std::string") == 0) {
StreamObj(o, V, Ty);
o << " "; // force a space
o <<"c_str: ";
StreamCharPtr(o, ((const char*) (*(const std::string*)V).c_str()));
}
else if (Ty->isEnumeralType()) {
clang::EnumDecl* ED = Ty->getAs<clang::EnumType>()->getDecl();
uint64_t value = *(const uint64_t*)V;
bool IsFirst = true;
llvm::APSInt ValAsAPSInt = C.MakeIntValue(value, Ty);
for (clang::EnumDecl::enumerator_iterator I = ED->enumerator_begin(),
E = ED->enumerator_end(); I != E; ++I) {
if (I->getInitVal() == ValAsAPSInt) {
if (!IsFirst) {
o << " ? ";
}
o << "(" << I->getQualifiedNameAsString() << ")";
IsFirst = false;
}
}
o << " : (int) " << ValAsAPSInt.toString(/*Radix = */10);
}
else if (Ty->isReferenceType())
StreamRef(o, (const void**)&V, Ty, Interp);
else if (Ty->isPointerType()) {
clang::QualType PointeeTy = Ty->getPointeeType();
if (PointeeTy->isCharType())
StreamCharPtr(o, (const char*)V);
else if (PointeeTy->isFunctionProtoType())
StreamFunction(o, V, PointeeTy, Interp);
else
StreamPtr(o, V);
}
else if (Ty->isArrayType())
StreamArr(o, V, Ty, Interp);
else if (Ty->isFunctionType())
StreamFunction(o, V, Ty, Interp);
else
StreamObj(o, V, Ty);
}
示例4: analyzeCombiner
// Process "void combinename(compType *accum, const compType *val)"
void RSExportReduce::analyzeCombiner(StateOfAnalyzeTranslationUnit &S) {
if (S.FnCombiner) {
// Must return void
checkVoidReturn(S, FN_IDENT_COMBINER, S.FnCombiner);
// Must have exactly two parameters, of same type as first accumulator parameter
if (S.FnCombiner->getNumParams() != 2) {
S.RSC.ReportError(S.FnCombiner->getLocation(),
"%0 must take exactly 2 parameters (found %1)")
<< S.DiagnosticDescription(KeyCombiner, mNameCombiner)
<< S.FnCombiner->getNumParams();
S.Ok = false;
return;
}
if (S.FnAccumulatorParamFirstTy.isNull() || !S.FnAccumulatorParamFirstTy->isPointerType()) {
// We're already in an error situation. We could compare
// against the initializer parameter type instead of the first
// accumulator parameter type (we'd have to check for the
// availability of a parameter type there, too), but it does not
// seem worth the effort.
//
// Likewise, we could compare the two combiner parameter types
// against each other.
slangAssert(!S.Ok);
return;
}
for (int ParamIdx = 0; ParamIdx < 2; ++ParamIdx) {
const clang::ParmVarDecl *const FnCombinerParam = S.FnCombiner->getParamDecl(ParamIdx);
const clang::QualType FnCombinerParamTy = FnCombinerParam->getType().getCanonicalType();
if (!FnCombinerParamTy->isPointerType() ||
!S.FnCombiner->getASTContext().hasSameUnqualifiedType(
S.FnAccumulatorParamFirstTy->getPointeeType().getCanonicalType(),
FnCombinerParamTy->getPointeeType().getCanonicalType())) {
// <combiner> parameter '<baz>' (type '<tbaz>')
// and accumulator <goo>() parameter '<gaz>' (type '<tgaz>') must be pointers to the same type
S.RSC.ReportError(S.FnCombiner->getLocation(),
"%0 parameter '%1' (type '%2') and %3 %4() parameter '%5' (type '%6')"
" must be pointers to the same type")
<< S.DiagnosticDescription(KeyCombiner, mNameCombiner)
<< FnCombinerParam->getName() << FnCombinerParamTy.getAsString()
<< KeyAccumulator << mNameAccumulator
<< S.FnAccumulatorParamFirst->getName() << S.FnAccumulatorParamFirstTy.getAsString();
S.Ok = false;
} else {
// Check const-qualification
checkPointeeConstQualified(S, FN_IDENT_COMBINER, mNameCombiner, FnCombinerParam, ParamIdx==1);
}
}
return;
}
// Ensure accumulator properties permit omission of combiner.
if (!S.FnAccumulatorOk) {
// Couldn't fully analyze accumulator, so cannot see whether it permits omission of combiner.
return;
}
if (mAccumulatorIns.size() != 1 ||
S.FnAccumulatorIndexOfFirstSpecialParameter != S.FnAccumulator->getNumParams())
{
S.RSC.ReportError(S.FnAccumulator->getLocation(),
"%0 must have exactly 1 input"
" and no special parameters in order for the %1 to be omitted")
<< S.DiagnosticDescription(KeyAccumulator, mNameAccumulator)
<< KeyCombiner;
S.Ok = false;
return;
}
const clang::ParmVarDecl *const FnAccumulatorParamInput = S.FnAccumulator->getParamDecl(1);
const clang::QualType FnAccumulatorParamInputTy = FnAccumulatorParamInput->getType().getCanonicalType();
if (!S.FnAccumulator->getASTContext().hasSameUnqualifiedType(
S.FnAccumulatorParamFirstTy->getPointeeType().getCanonicalType(),
FnAccumulatorParamInputTy.getCanonicalType())) {
S.RSC.ReportError(S.FnAccumulator->getLocation(),
"%0 parameter '%1' (type '%2')"
" must be pointer to the type of parameter '%3' (type '%4')"
" in order for the %5 to be omitted")
<< S.DiagnosticDescription(KeyAccumulator, mNameAccumulator)
<< S.FnAccumulatorParamFirst->getName() << S.FnAccumulatorParamFirstTy.getAsString()
<< FnAccumulatorParamInput->getName() << FnAccumulatorParamInputTy.getAsString()
<< KeyCombiner;
S.Ok = false;
}
}