本文整理汇总了C++中basicblock::iterator::getType方法的典型用法代码示例。如果您正苦于以下问题:C++ iterator::getType方法的具体用法?C++ iterator::getType怎么用?C++ iterator::getType使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类basicblock::iterator
的用法示例。
在下文中一共展示了iterator::getType方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: rebuildSSA
/// Handle a rare case where the disintegrated nodes instructions
/// no longer dominate all their uses. Not sure if this is really nessasary
void StructurizeCFG::rebuildSSA() {
SSAUpdater Updater;
for (const auto &BB : ParentRegion->blocks())
for (BasicBlock::iterator II = BB->begin(), IE = BB->end();
II != IE; ++II) {
bool Initialized = false;
for (auto I = II->use_begin(), E = II->use_end(); I != E;) {
Use &U = *I++;
Instruction *User = cast<Instruction>(U.getUser());
if (User->getParent() == BB) {
continue;
} else if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
if (UserPN->getIncomingBlock(U) == BB)
continue;
}
if (DT->dominates(II, User))
continue;
if (!Initialized) {
Value *Undef = UndefValue::get(II->getType());
Updater.Initialize(II->getType(), "");
Updater.AddAvailableValue(&Func->getEntryBlock(), Undef);
Updater.AddAvailableValue(BB, II);
Initialized = true;
}
Updater.RewriteUseAfterInsertions(U);
}
}
}
示例2: checkFeatures
void MemoryInstrumenter::checkFeatures(Module &M) {
// Check whether any memory allocation function can
// potentially be pointed by function pointers.
// Also, all intrinsic functions will be called directly,
// i.e. not via function pointers.
for (Module::iterator F = M.begin(); F != M.end(); ++F) {
if (DynAAUtils::IsMalloc(F) || F->isIntrinsic()) {
for (Value::use_iterator UI = F->use_begin(); UI != F->use_end(); ++UI) {
User *Usr = *UI;
assert(isa<CallInst>(Usr) || isa<InvokeInst>(Usr));
CallSite CS(cast<Instruction>(Usr));
for (unsigned i = 0; i < CS.arg_size(); ++i)
assert(CS.getArgument(i) != F);
}
}
}
// Check whether memory allocation functions are captured.
for (Module::iterator F = M.begin(); F != M.end(); ++F) {
// 0 is the return, 1 is the first parameter.
if (F->isDeclaration() && F->doesNotAlias(0) && !DynAAUtils::IsMalloc(F)) {
errs().changeColor(raw_ostream::RED);
errs() << F->getName() << "'s return value is marked noalias, ";
errs() << "but the function is not treated as malloc.\n";
errs().resetColor();
}
}
// Sequential types except pointer types shouldn't be used as the type of
// an instruction, a function parameter, or a global variable.
for (Module::global_iterator GI = M.global_begin(), E = M.global_end();
GI != E; ++GI) {
if (isa<SequentialType>(GI->getType()))
assert(GI->getType()->isPointerTy());
}
for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
for (Function::arg_iterator AI = F->arg_begin(); AI != F->arg_end(); ++AI) {
if (isa<SequentialType>(AI->getType()))
assert(AI->getType()->isPointerTy());
}
}
for (Module::iterator F = M.begin(); F != M.end(); ++F) {
for (Function::iterator BB = F->begin(); BB != F->end(); ++BB) {
for (BasicBlock::iterator Ins = BB->begin(); Ins != BB->end(); ++Ins) {
if (isa<SequentialType>(Ins->getType()))
assert(Ins->getType()->isPointerTy());
}
}
}
// We don't support multi-process programs for now.
if (!HookFork)
assert(M.getFunction("fork") == NULL);
}
示例3: runOnFunction
virtual bool runOnFunction(Function& f)
{
CurrentFile::set(__FILE__);
bool changed = false;
// Make sure this is a function that we can use
if (f.isDeclaration() /*|| !f.isDFFunction()*/ )
{
return changed ;
}
for(Function::iterator BB = f.begin(); BB != f.end(); ++BB)
{
begin:
for(BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II)
{
if( !dynamic_cast<TerminatorInst*>(&*II) )
{
II->replaceAllUsesWith(UndefValue::get(II->getType()));
II->eraseFromParent();
goto begin;
}
}
}
changed = true;
return changed;
}
示例4: DeleteBasicBlock
/// DeleteBasicBlock - remove the specified basic block from the program,
/// updating the callgraph to reflect any now-obsolete edges due to calls that
/// exist in the BB.
void PruneEH::DeleteBasicBlock(BasicBlock *BB) {
assert(pred_begin(BB) == pred_end(BB) && "BB is not dead!");
CallGraph &CG = getAnalysis<CallGraph>();
CallGraphNode *CGN = CG[BB->getParent()];
for (BasicBlock::iterator I = BB->end(), E = BB->begin(); I != E; ) {
--I;
if (CallInst *CI = dyn_cast<CallInst>(I)) {
if (Function *Callee = CI->getCalledFunction())
CGN->removeCallEdgeTo(CG[Callee]);
} else if (InvokeInst *II = dyn_cast<InvokeInst>(I)) {
if (Function *Callee = II->getCalledFunction())
CGN->removeCallEdgeTo(CG[Callee]);
}
if (!I->use_empty())
I->replaceAllUsesWith(UndefValue::get(I->getType()));
}
// Get the list of successors of this block.
std::vector<BasicBlock*> Succs(succ_begin(BB), succ_end(BB));
for (unsigned i = 0, e = Succs.size(); i != e; ++i)
Succs[i]->removePredecessor(BB);
BB->eraseFromParent();
}
示例5: X
void IntTest::pbzip2_like(Module &M) {
TestBanner X("pbzip2-like");
vector<StoreInst *> writes;
Function *f_rand = M.getFunction("rand");
assert(f_rand);
Function *f_producer = M.getFunction("_Z8producerPv.SLICER");
assert(f_producer);
// Search along the CFG. We need to make sure reads and writes are in
// a consistent order.
for (Function::iterator bb = f_producer->begin();
bb != f_producer->end(); ++bb) {
for (BasicBlock::iterator ins = bb->begin(); ins != bb->end(); ++ins) {
if (CallInst *ci = dyn_cast<CallInst>(ins)) {
if (ci->getCalledFunction() == f_rand) {
for (BasicBlock::iterator j = bb->begin(); j != bb->end(); ++j) {
if (StoreInst *si = dyn_cast<StoreInst>(j))
writes.push_back(si);
}
}
}
}
}
errs() << "=== writes ===\n";
for (size_t i = 0; i < writes.size(); ++i) {
errs() << *writes[i] << "\n";
}
vector<LoadInst *> reads;
Function *f_consumer = M.getFunction("_Z8consumerPv.SLICER");
assert(f_consumer);
for (Function::iterator bb = f_consumer->begin();
bb != f_consumer->end(); ++bb) {
for (BasicBlock::iterator ins = bb->begin(); ins != bb->end(); ++ins) {
if (ins->getOpcode() == Instruction::Add &&
ins->getType()->isIntegerTy(8)) {
LoadInst *li = dyn_cast<LoadInst>(ins->getOperand(0));
assert(li);
reads.push_back(li);
}
}
}
errs() << "=== reads ===\n";
for (size_t i = 0; i < reads.size(); ++i) {
errs() << *reads[i] << "\n";
}
assert(writes.size() == reads.size());
AliasAnalysis &AA = getAnalysis<AdvancedAlias>();
for (size_t i = 0; i < writes.size(); ++i) {
for (size_t j = i + 1; j < reads.size(); ++j) {
errs() << "i = " << i << ", j = " << j << "... ";
AliasAnalysis::AliasResult res = AA.alias(
writes[i]->getPointerOperand(),
reads[j]->getPointerOperand());
assert(res == AliasAnalysis::NoAlias);
print_pass(errs());
}
}
}
示例6: collectPossibleIVs
// Collect the list of loop induction variables with respect to which it might
// be possible to reroll the loop.
void LoopReroll::collectPossibleIVs(Loop *L,
SmallInstructionVector &PossibleIVs) {
BasicBlock *Header = L->getHeader();
for (BasicBlock::iterator I = Header->begin(),
IE = Header->getFirstInsertionPt(); I != IE; ++I) {
if (!isa<PHINode>(I))
continue;
if (!I->getType()->isIntegerTy())
continue;
if (const SCEVAddRecExpr *PHISCEV =
dyn_cast<SCEVAddRecExpr>(SE->getSCEV(I))) {
if (PHISCEV->getLoop() != L)
continue;
if (!PHISCEV->isAffine())
continue;
if (const SCEVConstant *IncSCEV =
dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE))) {
if (!IncSCEV->getValue()->getValue().isStrictlyPositive())
continue;
if (IncSCEV->getValue()->uge(MaxInc))
continue;
DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " <<
*PHISCEV << "\n");
PossibleIVs.push_back(I);
}
}
}
}
示例7: ChangeToUnreachable
/// ChangeToUnreachable - Insert an unreachable instruction before the specified
/// instruction, making it and the rest of the code in the block dead.
static void ChangeToUnreachable(Instruction *I, bool UseLLVMTrap) {
BasicBlock *BB = I->getParent();
// Loop over all of the successors, removing BB's entry from any PHI
// nodes.
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
(*SI)->removePredecessor(BB);
// Insert a call to llvm.trap right before this. This turns the undefined
// behavior into a hard fail instead of falling through into random code.
if (UseLLVMTrap) {
Function *TrapFn =
Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
CallTrap->setDebugLoc(I->getDebugLoc());
}
new UnreachableInst(I->getContext(), I);
// All instructions after this are dead.
BasicBlock::iterator BBI = I, BBE = BB->end();
while (BBI != BBE) {
if (!BBI->use_empty())
BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
BB->getInstList().erase(BBI++);
}
}
示例8: analyzeBlock
/// \brief Analyze a basic block for its contribution to the inline cost.
///
/// This method walks the analyzer over every instruction in the given basic
/// block and accounts for their cost during inlining at this callsite. It
/// aborts early if the threshold has been exceeded or an impossible to inline
/// construct has been detected. It returns false if inlining is no longer
/// viable, and true if inlining remains viable.
bool CallAnalyzer::analyzeBlock(BasicBlock *BB,
SmallPtrSetImpl<const Value *> &EphValues) {
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
// FIXME: Currently, the number of instructions in a function regardless of
// our ability to simplify them during inline to constants or dead code,
// are actually used by the vector bonus heuristic. As long as that's true,
// we have to special case debug intrinsics here to prevent differences in
// inlining due to debug symbols. Eventually, the number of unsimplified
// instructions shouldn't factor into the cost computation, but until then,
// hack around it here.
if (isa<DbgInfoIntrinsic>(I))
continue;
// Skip ephemeral values.
if (EphValues.count(I))
continue;
++NumInstructions;
if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy())
++NumVectorInstructions;
// If the instruction simplified to a constant, there is no cost to this
// instruction. Visit the instructions using our InstVisitor to account for
// all of the per-instruction logic. The visit tree returns true if we
// consumed the instruction in any way, and false if the instruction's base
// cost should count against inlining.
if (Base::visit(I))
++NumInstructionsSimplified;
else
Cost += InlineConstants::InstrCost;
// If the visit this instruction detected an uninlinable pattern, abort.
if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca ||
HasIndirectBr)
return false;
// If the caller is a recursive function then we don't want to inline
// functions which allocate a lot of stack space because it would increase
// the caller stack usage dramatically.
if (IsCallerRecursive &&
AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller)
return false;
if (NumVectorInstructions > NumInstructions/2)
VectorBonus = FiftyPercentVectorBonus;
else if (NumVectorInstructions > NumInstructions/10)
VectorBonus = TenPercentVectorBonus;
else
VectorBonus = 0;
// Check if we've past the threshold so we don't spin in huge basic
// blocks that will never inline.
if (Cost > (Threshold + VectorBonus))
return false;
}
return true;
}
示例9: SplitLandingPadPredecessors
BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
ArrayRef<BasicBlock *> Preds,
const char *Suffix, DominatorTree *DT,
LoopInfo *LI, bool PreserveLCSSA) {
// Do not attempt to split that which cannot be split.
if (!BB->canSplitPredecessors())
return nullptr;
// For the landingpads we need to act a bit differently.
// Delegate this work to the SplitLandingPadPredecessors.
if (BB->isLandingPad()) {
SmallVector<BasicBlock*, 2> NewBBs;
std::string NewName = std::string(Suffix) + ".split-lp";
SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
LI, PreserveLCSSA);
return NewBBs[0];
}
// Create new basic block, insert right before the original block.
BasicBlock *NewBB = BasicBlock::Create(
BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
// The new block unconditionally branches to the old block.
BranchInst *BI = BranchInst::Create(BB, NewBB);
BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
// Move the edges from Preds to point to NewBB instead of BB.
for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
// This is slightly more strict than necessary; the minimum requirement
// is that there be no more than one indirectbr branching to BB. And
// all BlockAddress uses would need to be updated.
assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
"Cannot split an edge from an IndirectBrInst");
Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
}
// Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
// node becomes an incoming value for BB's phi node. However, if the Preds
// list is empty, we need to insert dummy entries into the PHI nodes in BB to
// account for the newly created predecessor.
if (Preds.empty()) {
// Insert dummy values as the incoming value.
for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
return NewBB;
}
// Update DominatorTree, LoopInfo, and LCCSA analysis information.
bool HasLoopExit = false;
UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, PreserveLCSSA,
HasLoopExit);
// Update the PHI nodes in BB with the values coming from NewBB.
UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
return NewBB;
}
示例10: checkFeatures
void MemoryInstrumenter::checkFeatures(Module &M) {
// Check whether any memory allocation function can
// potentially be pointed by function pointers.
// Also, all intrinsic functions will be called directly,
// i.e. not via function pointers.
for (Module::iterator F = M.begin(); F != M.end(); ++F) {
if (DynAAUtils::IsMalloc(F) || F->isIntrinsic()) {
for (Value::use_iterator UI = F->use_begin(); UI != F->use_end(); ++UI) {
User *Usr = *UI;
assert(isa<CallInst>(Usr) || isa<InvokeInst>(Usr));
CallSite CS(cast<Instruction>(Usr));
for (unsigned i = 0; i < CS.arg_size(); ++i)
assert(CS.getArgument(i) != F);
}
}
}
// Check whether memory allocation functions are captured.
for (Module::iterator F = M.begin(); F != M.end(); ++F) {
// 0 is the return, 1 is the first parameter.
if (F->isDeclaration() && F->doesNotAlias(0) && !DynAAUtils::IsMalloc(F)) {
errs().changeColor(raw_ostream::RED);
errs() << F->getName() << "'s return value is marked noalias, ";
errs() << "but the function is not treated as malloc.\n";
errs().resetColor();
}
}
// Global variables shouldn't be of the array type.
for (Module::global_iterator GI = M.global_begin(), E = M.global_end();
GI != E; ++GI) {
assert(!GI->getType()->isArrayTy());
}
// A function parameter or an instruction can be an array, but we don't
// instrument such constructs for now. Issue a warning on such cases.
for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
for (Function::arg_iterator AI = F->arg_begin(); AI != F->arg_end(); ++AI) {
if (AI->getType()->isArrayTy()) {
errs().changeColor(raw_ostream::RED);
errs() << F->getName() << ":" << *AI << " is an array\n";
errs().resetColor();
}
}
}
for (Module::iterator F = M.begin(); F != M.end(); ++F) {
for (Function::iterator BB = F->begin(); BB != F->end(); ++BB) {
for (BasicBlock::iterator Ins = BB->begin(); Ins != BB->end(); ++Ins) {
if (Ins->getType()->isArrayTy()) {
errs().changeColor(raw_ostream::RED);
errs() << F->getName() << ":" << *Ins << " is an array\n";
errs().resetColor();
}
}
}
}
}
示例11: bypassSlowDivision
// bypassSlowDivision - This optimization identifies DIV instructions that can
// be profitably bypassed and carried out with a shorter, faster divide.
bool llvm::bypassSlowDivision(Function &F,
Function::iterator &I,
const DenseMap<unsigned int, unsigned int> &BypassWidths) {
DivCacheTy DivCache;
bool MadeChange = false;
for (BasicBlock::iterator J = I->begin(); J != I->end(); J++) {
// Get instruction details
unsigned Opcode = J->getOpcode();
bool UseDivOp = Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
bool UseRemOp = Opcode == Instruction::SRem || Opcode == Instruction::URem;
bool UseSignedOp = Opcode == Instruction::SDiv ||
Opcode == Instruction::SRem;
// Only optimize div or rem ops
if (!UseDivOp && !UseRemOp)
continue;
// Skip division on vector types, only optimize integer instructions
if (!J->getType()->isIntegerTy())
continue;
// Get bitwidth of div/rem instruction
IntegerType *T = cast<IntegerType>(J->getType());
unsigned int bitwidth = T->getBitWidth();
// Continue if bitwidth is not bypassed
DenseMap<unsigned int, unsigned int>::const_iterator BI = BypassWidths.find(bitwidth);
if (BI == BypassWidths.end())
continue;
// Get type for div/rem instruction with bypass bitwidth
IntegerType *BT = IntegerType::get(J->getContext(), BI->second);
MadeChange |= reuseOrInsertFastDiv(F, I, J, BT, UseDivOp,
UseSignedOp, DivCache);
}
return MadeChange;
}
示例12: DeleteBasicBlock
/// DeleteBasicBlock - remove the specified basic block from the program,
/// updating the callgraph to reflect any now-obsolete edges due to calls that
/// exist in the BB.
void PruneEH::DeleteBasicBlock(BasicBlock *BB) {
assert(pred_empty(BB) && "BB is not dead!");
CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
Instruction *TokenInst = nullptr;
CallGraphNode *CGN = CG[BB->getParent()];
for (BasicBlock::iterator I = BB->end(), E = BB->begin(); I != E; ) {
--I;
if (I->getType()->isTokenTy()) {
TokenInst = &*I;
break;
}
if (auto CS = CallSite (&*I)) {
const Function *Callee = CS.getCalledFunction();
if (!Callee || !Intrinsic::isLeaf(Callee->getIntrinsicID()))
CGN->removeCallEdgeFor(CS);
else if (!Callee->isIntrinsic())
CGN->removeCallEdgeFor(CS);
}
if (!I->use_empty())
I->replaceAllUsesWith(UndefValue::get(I->getType()));
}
if (TokenInst) {
if (!isa<TerminatorInst>(TokenInst))
changeToUnreachable(TokenInst->getNextNode(), /*UseLLVMTrap=*/false);
} else {
// Get the list of successors of this block.
std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
for (unsigned i = 0, e = Succs.size(); i != e; ++i)
Succs[i]->removePredecessor(BB);
BB->eraseFromParent();
}
}
示例13: rebuildSSA
/// Handle a rare case where the disintegrated nodes instructions
/// no longer dominate all their uses. Not sure if this is really nessasary
void StructurizeCFG::rebuildSSA() {
SSAUpdater Updater;
for (Region::block_iterator I = ParentRegion->block_begin(),
E = ParentRegion->block_end();
I != E; ++I) {
BasicBlock *BB = *I;
for (BasicBlock::iterator II = BB->begin(), IE = BB->end();
II != IE; ++II) {
bool Initialized = false;
for (Use *I = &II->use_begin().getUse(), *Next; I; I = Next) {
Next = I->getNext();
Instruction *User = cast<Instruction>(I->getUser());
if (User->getParent() == BB) {
continue;
} else if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
if (UserPN->getIncomingBlock(*I) == BB)
continue;
}
if (DT->dominates(II, User))
continue;
if (!Initialized) {
Value *Undef = UndefValue::get(II->getType());
Updater.Initialize(II->getType(), "");
Updater.AddAvailableValue(&Func->getEntryBlock(), Undef);
Updater.AddAvailableValue(BB, II);
Initialized = true;
}
Updater.RewriteUseAfterInsertions(*I);
}
}
}
}
示例14: runOnFunction
bool SSIEverything::runOnFunction(Function &F) {
SmallVector<Instruction *, 16> Insts;
SSI &ssi = getAnalysis<SSI>();
if (F.isDeclaration() || F.isIntrinsic()) return false;
for (Function::iterator B = F.begin(), BE = F.end(); B != BE; ++B)
for (BasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I)
if (!I->getType()->isVoidTy())
Insts.push_back(I);
ssi.createSSI(Insts);
return true;
}
示例15: ChangeToUnreachable
/// ChangeToUnreachable - Insert an unreachable instruction before the specified
/// instruction, making it and the rest of the code in the block dead.
static void ChangeToUnreachable(Instruction *I) {
BasicBlock *BB = I->getParent();
// Loop over all of the successors, removing BB's entry from any PHI
// nodes.
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
(*SI)->removePredecessor(BB);
new UnreachableInst(I);
// All instructions after this are dead.
BasicBlock::iterator BBI = I, BBE = BB->end();
while (BBI != BBE) {
if (!BBI->use_empty())
BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
BB->getInstList().erase(BBI++);
}
}