本文整理汇总了C++中basicblock::iterator类的典型用法代码示例。如果您正苦于以下问题:C++ iterator类的具体用法?C++ iterator怎么用?C++ iterator使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了iterator类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: SimplifyDivRemOfSelect
/// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
/// instruction.
bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
SelectInst *SI = cast<SelectInst>(I.getOperand(1));
// div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
int NonNullOperand = -1;
if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
if (ST->isNullValue())
NonNullOperand = 2;
// div/rem X, (Cond ? Y : 0) -> div/rem X, Y
if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
if (ST->isNullValue())
NonNullOperand = 1;
if (NonNullOperand == -1)
return false;
Value *SelectCond = SI->getOperand(0);
// Change the div/rem to use 'Y' instead of the select.
I.setOperand(1, SI->getOperand(NonNullOperand));
// Okay, we know we replace the operand of the div/rem with 'Y' with no
// problem. However, the select, or the condition of the select may have
// multiple uses. Based on our knowledge that the operand must be non-zero,
// propagate the known value for the select into other uses of it, and
// propagate a known value of the condition into its other users.
// If the select and condition only have a single use, don't bother with this,
// early exit.
if (SI->use_empty() && SelectCond->hasOneUse())
return true;
// Scan the current block backward, looking for other uses of SI.
BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
while (BBI != BBFront) {
--BBI;
// If we found a call to a function, we can't assume it will return, so
// information from below it cannot be propagated above it.
if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
break;
// Replace uses of the select or its condition with the known values.
for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
I != E; ++I) {
if (*I == SI) {
*I = SI->getOperand(NonNullOperand);
Worklist.Add(BBI);
} else if (*I == SelectCond) {
*I = NonNullOperand == 1 ? ConstantInt::getTrue(BBI->getContext()) :
ConstantInt::getFalse(BBI->getContext());
Worklist.Add(BBI);
}
}
// If we past the instruction, quit looking for it.
if (&*BBI == SI)
SI = 0;
if (&*BBI == SelectCond)
SelectCond = 0;
// If we ran out of things to eliminate, break out of the loop.
if (SelectCond == 0 && SI == 0)
break;
}
return true;
}
示例2: SimplifyStoreAtEndOfBlock
/// SimplifyStoreAtEndOfBlock - Turn things like:
/// if () { *P = v1; } else { *P = v2 }
/// into a phi node with a store in the successor.
///
/// Simplify things like:
/// *P = v1; if () { *P = v2; }
/// into a phi node with a store in the successor.
///
bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
BasicBlock *StoreBB = SI.getParent();
// Check to see if the successor block has exactly two incoming edges. If
// so, see if the other predecessor contains a store to the same location.
// if so, insert a PHI node (if needed) and move the stores down.
BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
// Determine whether Dest has exactly two predecessors and, if so, compute
// the other predecessor.
pred_iterator PI = pred_begin(DestBB);
BasicBlock *P = *PI;
BasicBlock *OtherBB = nullptr;
if (P != StoreBB)
OtherBB = P;
if (++PI == pred_end(DestBB))
return false;
P = *PI;
if (P != StoreBB) {
if (OtherBB)
return false;
OtherBB = P;
}
if (++PI != pred_end(DestBB))
return false;
// Bail out if all the relevant blocks aren't distinct (this can happen,
// for example, if SI is in an infinite loop)
if (StoreBB == DestBB || OtherBB == DestBB)
return false;
// Verify that the other block ends in a branch and is not otherwise empty.
BasicBlock::iterator BBI(OtherBB->getTerminator());
BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
if (!OtherBr || BBI == OtherBB->begin())
return false;
// If the other block ends in an unconditional branch, check for the 'if then
// else' case. there is an instruction before the branch.
StoreInst *OtherStore = nullptr;
if (OtherBr->isUnconditional()) {
--BBI;
// Skip over debugging info.
while (isa<DbgInfoIntrinsic>(BBI) ||
(isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
if (BBI==OtherBB->begin())
return false;
--BBI;
}
// If this isn't a store, isn't a store to the same location, or is not the
// right kind of store, bail out.
OtherStore = dyn_cast<StoreInst>(BBI);
if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
!SI.isSameOperationAs(OtherStore))
return false;
} else {
// Otherwise, the other block ended with a conditional branch. If one of the
// destinations is StoreBB, then we have the if/then case.
if (OtherBr->getSuccessor(0) != StoreBB &&
OtherBr->getSuccessor(1) != StoreBB)
return false;
// Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
// if/then triangle. See if there is a store to the same ptr as SI that
// lives in OtherBB.
for (;; --BBI) {
// Check to see if we find the matching store.
if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
if (OtherStore->getOperand(1) != SI.getOperand(1) ||
!SI.isSameOperationAs(OtherStore))
return false;
break;
}
// If we find something that may be using or overwriting the stored
// value, or if we run out of instructions, we can't do the xform.
if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
BBI == OtherBB->begin())
return false;
}
// In order to eliminate the store in OtherBr, we have to
// make sure nothing reads or overwrites the stored value in
// StoreBB.
for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
// FIXME: This should really be AA driven.
if (I->mayReadFromMemory() || I->mayWriteToMemory())
return false;
}
}
//.........这里部分代码省略.........
示例3: ArrObfuscate
void ArrayObfs::ArrObfuscate ( Function *F )
{
// Iterate the whole Function
Function *f = F;
for ( Function::iterator bb = f->begin(); bb != f->end(); ++bb )
{
for ( BasicBlock::iterator inst = bb->begin(); inst != bb->end(); )
{
if ( inst->getOpcode() == 29 ) // getelementptr
{
//errs() << "INST : " << *inst << "\n";
GetElementPtrInst *Ary = dyn_cast<GetElementPtrInst>(&*inst);
Value *ptrVal = Ary->getOperand(0);
Type *type = ptrVal->getType();
unsigned numOfOprand = Ary->getNumOperands();
unsigned lastOprand = numOfOprand - 1;
// Check Type Array
if ( PointerType *ptrType = dyn_cast<PointerType>( type ) )
{
Type *elementType = ptrType->getElementType();
if ( elementType->isArrayTy() )
{
// Skip if Index is a Variable
if ( dyn_cast<ConstantInt>( Ary->getOperand( lastOprand ) ) )
{
//////////////////////////////////////////////////////////////////////////////
// Do Real Stuff
Value *oprand = Ary->getOperand( lastOprand );
Value *basePtr = Ary->getOperand( 0 );
APInt offset = dyn_cast<ConstantInt>(oprand)->getValue();
Value *prevPtr = basePtr;
// Enter a Loop to Perform Random Obfuscation
unsigned cnt = 100;
// Prelog : Clone the Original Inst
unsigned ObfsIdx = cryptoutils->get_uint64_t() & 0xffff;
Value *newOprand = ConstantInt::get( oprand->getType(), ObfsIdx );
Instruction *gep = inst->clone();
gep->setOperand( lastOprand, newOprand );
gep->setOperand( 0, prevPtr );
gep->insertBefore( inst );
prevPtr = gep;
offset = offset - ObfsIdx;
// Create a Global Variable to Avoid Optimization
Module *M = f->getParent();
Constant *initGV = ConstantInt::get( prevPtr->getType(), 0 );
GlobalVariable *gv = new GlobalVariable( *M, prevPtr->getType(), false, GlobalValue::CommonLinkage, initGV );
while ( cnt-- )
{
// Iteratively Generate Obfuscated Code
switch( cryptoutils->get_uint64_t() & 7 )
{
// Random Indexing Obfuscation
case 0 :
case 1 :
case 2 :
{
//errs() << "=> Random Index \n";
// Create New Instruction
// Create Obfuscated New Oprand in ConstantInt Type
unsigned ObfsIdx = cryptoutils->get_uint64_t() & 0xffff;
Value *newOprand = ConstantInt::get( oprand->getType(), ObfsIdx );
// Create GetElementPtrInst Instruction
GetElementPtrInst *gep = GetElementPtrInst::Create( prevPtr, newOprand, "", inst );
//Set prevPtr
prevPtr = gep;
//errs() << "Created : " << *prevPtr << "\n";
offset = offset - ObfsIdx;
break;
}
// Ptr Dereference
case 3 :
case 4 :
{
//errs() << "=> Ptr Dereference \n";
Module *M = f->getParent();
Value *ONE = ConstantInt::get( Type::getInt32Ty( M->getContext() ), 1 );
Value *tmp = new AllocaInst( prevPtr->getType(), ONE, "", inst );
new StoreInst( prevPtr, tmp, inst );
prevPtr = new LoadInst( tmp, "", inst );
//.........这里部分代码省略.........
示例4: runOnModule
bool GenericToNVVM::runOnModule(Module &M) {
// Create a clone of each global variable that has the default address space.
// The clone is created with the global address space specifier, and the pair
// of original global variable and its clone is placed in the GVMap for later
// use.
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E;) {
GlobalVariable *GV = &*I++;
if (GV->getType()->getAddressSpace() == llvm::ADDRESS_SPACE_GENERIC &&
!llvm::isTexture(*GV) && !llvm::isSurface(*GV) &&
!llvm::isSampler(*GV) && !GV->getName().startswith("llvm.")) {
GlobalVariable *NewGV = new GlobalVariable(
M, GV->getValueType(), GV->isConstant(),
GV->getLinkage(),
GV->hasInitializer() ? GV->getInitializer() : nullptr,
"", GV, GV->getThreadLocalMode(), llvm::ADDRESS_SPACE_GLOBAL);
NewGV->copyAttributesFrom(GV);
GVMap[GV] = NewGV;
}
}
// Return immediately, if every global variable has a specific address space
// specifier.
if (GVMap.empty()) {
return false;
}
// Walk through the instructions in function defitinions, and replace any use
// of original global variables in GVMap with a use of the corresponding
// copies in GVMap. If necessary, promote constants to instructions.
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
if (I->isDeclaration()) {
continue;
}
IRBuilder<> Builder(I->getEntryBlock().getFirstNonPHIOrDbg());
for (Function::iterator BBI = I->begin(), BBE = I->end(); BBI != BBE;
++BBI) {
for (BasicBlock::iterator II = BBI->begin(), IE = BBI->end(); II != IE;
++II) {
for (unsigned i = 0, e = II->getNumOperands(); i < e; ++i) {
Value *Operand = II->getOperand(i);
if (isa<Constant>(Operand)) {
II->setOperand(
i, remapConstant(&M, &*I, cast<Constant>(Operand), Builder));
}
}
}
}
ConstantToValueMap.clear();
}
// Copy GVMap over to a standard value map.
ValueToValueMapTy VM;
for (auto I = GVMap.begin(), E = GVMap.end(); I != E; ++I)
VM[I->first] = I->second;
// Walk through the metadata section and update the debug information
// associated with the global variables in the default address space.
for (NamedMDNode &I : M.named_metadata()) {
remapNamedMDNode(VM, &I);
}
// Walk through the global variable initializers, and replace any use of
// original global variables in GVMap with a use of the corresponding copies
// in GVMap. The copies need to be bitcast to the original global variable
// types, as we cannot use cvta in global variable initializers.
for (GVMapTy::iterator I = GVMap.begin(), E = GVMap.end(); I != E;) {
GlobalVariable *GV = I->first;
GlobalVariable *NewGV = I->second;
// Remove GV from the map so that it can be RAUWed. Note that
// DenseMap::erase() won't invalidate any iterators but this one.
auto Next = std::next(I);
GVMap.erase(I);
I = Next;
Constant *BitCastNewGV = ConstantExpr::getPointerCast(NewGV, GV->getType());
// At this point, the remaining uses of GV should be found only in global
// variable initializers, as other uses have been already been removed
// while walking through the instructions in function definitions.
GV->replaceAllUsesWith(BitCastNewGV);
std::string Name = GV->getName();
GV->eraseFromParent();
NewGV->setName(Name);
}
assert(GVMap.empty() && "Expected it to be empty by now");
return true;
}
示例5: Ranges
/// tryAggregating - When scanning forward over instructions, we look for
/// other loads or stores that could be aggregated with this one.
/// Returns the last instruction added (if one was added) since we might have
/// removed some loads or stores and that might invalidate an iterator.
Instruction *AggregateGlobalOpsOpt::tryAggregating(Instruction *StartInst, Value *StartPtr,
bool DebugThis) {
if (TD == 0) return 0;
Module* M = StartInst->getParent()->getParent()->getParent();
LLVMContext& Context = StartInst->getContext();
Type* int8Ty = Type::getInt8Ty(Context);
Type* sizeTy = Type::getInt64Ty(Context);
Type* globalInt8PtrTy = int8Ty->getPointerTo(globalSpace);
bool isLoad = isa<LoadInst>(StartInst);
bool isStore = isa<StoreInst>(StartInst);
Instruction *lastAddedInsn = NULL;
Instruction *LastLoadOrStore = NULL;
SmallVector<Instruction*, 8> toRemove;
// Okay, so we now have a single global load/store. Scan to find
// all subsequent stores of the same value to offset from the same pointer.
// Join these together into ranges, so we can decide whether contiguous blocks
// are stored.
MemOpRanges Ranges(*TD);
// Put the first store in since we want to preserve the order.
Ranges.addInst(0, StartInst);
BasicBlock::iterator BI = StartInst;
for (++BI; !isa<TerminatorInst>(BI); ++BI) {
if( isGlobalLoadOrStore(BI, globalSpace, isLoad, isStore) ) {
// OK!
} else {
// If the instruction is readnone, ignore it, otherwise bail out. We
// don't even allow readonly here because we don't want something like:
// A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
if (BI->mayWriteToMemory())
break;
if (isStore && BI->mayReadFromMemory())
break;
continue;
}
if ( isStore && isa<StoreInst>(BI) ) {
StoreInst *NextStore = cast<StoreInst>(BI);
// If this is a store, see if we can merge it in.
if (!NextStore->isSimple()) break;
// Check to see if this store is to a constant offset from the start ptr.
int64_t Offset;
if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset, *TD))
break;
Ranges.addStore(Offset, NextStore);
LastLoadOrStore = NextStore;
} else {
LoadInst *NextLoad = cast<LoadInst>(BI);
if (!NextLoad->isSimple()) break;
// Check to see if this load is to a constant offset from the start ptr.
int64_t Offset;
if (!IsPointerOffset(StartPtr, NextLoad->getPointerOperand(), Offset, *TD))
break;
Ranges.addLoad(Offset, NextLoad);
LastLoadOrStore = NextLoad;
}
}
// If we have no ranges, then we just had a single store with nothing that
// could be merged in. This is a very common case of course.
if (!Ranges.moreThanOneOp())
return 0;
// Divide the instructions between StartInst and LastLoadOrStore into
// addressing, memops, and uses of memops (uses of loads)
reorderAddressingMemopsUses(StartInst, LastLoadOrStore, DebugThis);
Instruction* insertBefore = StartInst;
IRBuilder<> builder(insertBefore);
// Now that we have full information about ranges, loop over the ranges and
// emit memcpy's for anything big enough to be worthwhile.
for (MemOpRanges::const_iterator I = Ranges.begin(), E = Ranges.end();
I != E; ++I) {
const MemOpRange &Range = *I;
Value* oldBaseI = NULL;
Value* newBaseI = NULL;
if (Range.TheStores.size() == 1) continue; // Don't bother if there's only one thing...
builder.SetInsertPoint(insertBefore);
// Otherwise, we do want to transform this! Create a new memcpy.
// Get the starting pointer of the block.
StartPtr = Range.StartPtr;
//.........这里部分代码省略.........
示例6: performCustomLowering
/// runOnFunction - Insert code to maintain the shadow stack.
bool ShadowStackGC::performCustomLowering(Function &F) {
LLVMContext &Context = F.getContext();
// Find calls to llvm.gcroot.
CollectRoots(F);
// If there are no roots in this function, then there is no need to add a
// stack map entry for it.
if (Roots.empty())
return false;
// Build the constant map and figure the type of the shadow stack entry.
Value *FrameMap = GetFrameMap(F);
Type *ConcreteStackEntryTy = GetConcreteStackEntryType(F);
// Build the shadow stack entry at the very start of the function.
BasicBlock::iterator IP = F.getEntryBlock().begin();
IRBuilder<> AtEntry(IP->getParent(), IP);
Instruction *StackEntry = AtEntry.CreateAlloca(ConcreteStackEntryTy, 0,
"gc_frame");
while (isa<AllocaInst>(IP)) ++IP;
AtEntry.SetInsertPoint(IP->getParent(), IP);
// Initialize the map pointer and load the current head of the shadow stack.
Instruction *CurrentHead = AtEntry.CreateLoad(Head, "gc_currhead");
Instruction *EntryMapPtr = CreateGEP(Context, AtEntry, StackEntry,
0,1,"gc_frame.map");
AtEntry.CreateStore(FrameMap, EntryMapPtr);
// After all the allocas...
for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
// For each root, find the corresponding slot in the aggregate...
Value *SlotPtr = CreateGEP(Context, AtEntry, StackEntry, 1 + I, "gc_root");
// And use it in lieu of the alloca.
AllocaInst *OriginalAlloca = Roots[I].second;
SlotPtr->takeName(OriginalAlloca);
OriginalAlloca->replaceAllUsesWith(SlotPtr);
}
// Move past the original stores inserted by GCStrategy::InitRoots. This isn't
// really necessary (the collector would never see the intermediate state at
// runtime), but it's nicer not to push the half-initialized entry onto the
// shadow stack.
while (isa<StoreInst>(IP)) ++IP;
AtEntry.SetInsertPoint(IP->getParent(), IP);
// Push the entry onto the shadow stack.
Instruction *EntryNextPtr = CreateGEP(Context, AtEntry,
StackEntry,0,0,"gc_frame.next");
Instruction *NewHeadVal = CreateGEP(Context, AtEntry,
StackEntry, 0, "gc_newhead");
AtEntry.CreateStore(CurrentHead, EntryNextPtr);
AtEntry.CreateStore(NewHeadVal, Head);
// For each instruction that escapes...
EscapeEnumerator EE(F, "gc_cleanup");
while (IRBuilder<> *AtExit = EE.Next()) {
// Pop the entry from the shadow stack. Don't reuse CurrentHead from
// AtEntry, since that would make the value live for the entire function.
Instruction *EntryNextPtr2 = CreateGEP(Context, *AtExit, StackEntry, 0, 0,
"gc_frame.next");
Value *SavedHead = AtExit->CreateLoad(EntryNextPtr2, "gc_savedhead");
AtExit->CreateStore(SavedHead, Head);
}
// Delete the original allocas (which are no longer used) and the intrinsic
// calls (which are no longer valid). Doing this last avoids invalidating
// iterators.
for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
Roots[I].first->eraseFromParent();
Roots[I].second->eraseFromParent();
}
Roots.clear();
return true;
}
示例7: EraseInstFromFunction
Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
Value *Val = SI.getOperand(0);
Value *Ptr = SI.getOperand(1);
// If the RHS is an alloca with a single use, zapify the store, making the
// alloca dead.
// If the RHS is an alloca with a two uses, the other one being a
// llvm.dbg.declare, zapify the store and the declare, making the
// alloca dead. We must do this to prevent declares from affecting
// codegen.
if (!SI.isVolatile()) {
if (Ptr->hasOneUse()) {
if (isa<AllocaInst>(Ptr))
return EraseInstFromFunction(SI);
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
if (isa<AllocaInst>(GEP->getOperand(0))) {
if (GEP->getOperand(0)->hasOneUse())
return EraseInstFromFunction(SI);
if (DbgDeclareInst *DI = hasOneUsePlusDeclare(GEP->getOperand(0))) {
EraseInstFromFunction(*DI);
return EraseInstFromFunction(SI);
}
}
}
}
if (DbgDeclareInst *DI = hasOneUsePlusDeclare(Ptr)) {
EraseInstFromFunction(*DI);
return EraseInstFromFunction(SI);
}
}
// Attempt to improve the alignment.
if (TD) {
unsigned KnownAlign =
GetOrEnforceKnownAlignment(Ptr, TD->getPrefTypeAlignment(Val->getType()));
unsigned StoreAlign = SI.getAlignment();
unsigned EffectiveStoreAlign = StoreAlign != 0 ? StoreAlign :
TD->getABITypeAlignment(Val->getType());
if (KnownAlign > EffectiveStoreAlign)
SI.setAlignment(KnownAlign);
else if (StoreAlign == 0)
SI.setAlignment(EffectiveStoreAlign);
}
// Do really simple DSE, to catch cases where there are several consecutive
// stores to the same location, separated by a few arithmetic operations. This
// situation often occurs with bitfield accesses.
BasicBlock::iterator BBI = &SI;
for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
--ScanInsts) {
--BBI;
// Don't count debug info directives, lest they affect codegen,
// and we skip pointer-to-pointer bitcasts, which are NOPs.
if (isa<DbgInfoIntrinsic>(BBI) ||
(isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
ScanInsts++;
continue;
}
if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
// Prev store isn't volatile, and stores to the same location?
if (!PrevSI->isVolatile() &&equivalentAddressValues(PrevSI->getOperand(1),
SI.getOperand(1))) {
++NumDeadStore;
++BBI;
EraseInstFromFunction(*PrevSI);
continue;
}
break;
}
// If this is a load, we have to stop. However, if the loaded value is from
// the pointer we're loading and is producing the pointer we're storing,
// then *this* store is dead (X = load P; store X -> P).
if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
!SI.isVolatile())
return EraseInstFromFunction(SI);
// Otherwise, this is a load from some other location. Stores before it
// may not be dead.
break;
}
// Don't skip over loads or things that can modify memory.
if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
break;
}
if (SI.isVolatile()) return 0; // Don't hack volatile stores.
// store X, null -> turns into 'unreachable' in SimplifyCFG
if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
if (!isa<UndefValue>(Val)) {
SI.setOperand(0, UndefValue::get(Val->getType()));
if (Instruction *U = dyn_cast<Instruction>(Val))
Worklist.Add(U); // Dropped a use.
}
//.........这里部分代码省略.........
示例8: InjectCoverageAtBlock
void SanitizerCoverageModule::InjectCoverageAtBlock(Function &F, BasicBlock &BB,
bool UseCalls) {
// Don't insert coverage for unreachable blocks: we will never call
// __sanitizer_cov() for them, so counting them in
// NumberOfInstrumentedBlocks() might complicate calculation of code coverage
// percentage. Also, unreachable instructions frequently have no debug
// locations.
if (isa<UnreachableInst>(BB.getTerminator()))
return;
BasicBlock::iterator IP = BB.getFirstInsertionPt();
bool IsEntryBB = &BB == &F.getEntryBlock();
DebugLoc EntryLoc;
if (IsEntryBB) {
if (auto SP = getDISubprogram(&F))
EntryLoc = DebugLoc::get(SP->getScopeLine(), 0, SP);
// Keep static allocas and llvm.localescape calls in the entry block. Even
// if we aren't splitting the block, it's nice for allocas to be before
// calls.
IP = PrepareToSplitEntryBlock(BB, IP);
} else {
EntryLoc = IP->getDebugLoc();
}
IRBuilder<> IRB(&*IP);
IRB.SetCurrentDebugLocation(EntryLoc);
Value *GuardP = IRB.CreateAdd(
IRB.CreatePointerCast(GuardArray, IntptrTy),
ConstantInt::get(IntptrTy, (1 + NumberOfInstrumentedBlocks()) * 4));
Type *Int32PtrTy = PointerType::getUnqual(IRB.getInt32Ty());
GuardP = IRB.CreateIntToPtr(GuardP, Int32PtrTy);
if (Options.TracePC) {
IRB.CreateCall(SanCovTracePC);
} else if (Options.TraceBB) {
IRB.CreateCall(IsEntryBB ? SanCovTraceEnter : SanCovTraceBB, GuardP);
} else if (UseCalls) {
IRB.CreateCall(SanCovWithCheckFunction, GuardP);
} else {
LoadInst *Load = IRB.CreateLoad(GuardP);
Load->setAtomic(Monotonic);
Load->setAlignment(4);
SetNoSanitizeMetadata(Load);
Value *Cmp = IRB.CreateICmpSGE(Constant::getNullValue(Load->getType()), Load);
Instruction *Ins = SplitBlockAndInsertIfThen(
Cmp, &*IP, false, MDBuilder(*C).createBranchWeights(1, 100000));
IRB.SetInsertPoint(Ins);
IRB.SetCurrentDebugLocation(EntryLoc);
// __sanitizer_cov gets the PC of the instruction using GET_CALLER_PC.
IRB.CreateCall(SanCovFunction, GuardP);
IRB.CreateCall(EmptyAsm, {}); // Avoids callback merge.
}
if (Options.Use8bitCounters) {
IRB.SetInsertPoint(&*IP);
Value *P = IRB.CreateAdd(
IRB.CreatePointerCast(EightBitCounterArray, IntptrTy),
ConstantInt::get(IntptrTy, NumberOfInstrumentedBlocks() - 1));
P = IRB.CreateIntToPtr(P, IRB.getInt8PtrTy());
LoadInst *LI = IRB.CreateLoad(P);
Value *Inc = IRB.CreateAdd(LI, ConstantInt::get(IRB.getInt8Ty(), 1));
StoreInst *SI = IRB.CreateStore(Inc, P);
SetNoSanitizeMetadata(LI);
SetNoSanitizeMetadata(SI);
}
}
示例9: assert
/// SplitBlockPredecessors - This method transforms BB by introducing a new
/// basic block into the function, and moving some of the predecessors of BB to
/// be predecessors of the new block. The new predecessors are indicated by the
/// Preds array, which has NumPreds elements in it. The new block is given a
/// suffix of 'Suffix'.
///
/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
/// DominanceFrontier, LoopInfo, and LCCSA but no other analyses.
/// In particular, it does not preserve LoopSimplify (because it's
/// complicated to handle the case where one of the edges being split
/// is an exit of a loop with other exits).
///
BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
BasicBlock *const *Preds,
unsigned NumPreds, const char *Suffix,
Pass *P) {
// Create new basic block, insert right before the original block.
BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix,
BB->getParent(), BB);
// The new block unconditionally branches to the old block.
BranchInst *BI = BranchInst::Create(BB, NewBB);
LoopInfo *LI = P ? P->getAnalysisIfAvailable<LoopInfo>() : 0;
Loop *L = LI ? LI->getLoopFor(BB) : 0;
bool PreserveLCSSA = P->mustPreserveAnalysisID(LCSSAID);
// Move the edges from Preds to point to NewBB instead of BB.
// While here, if we need to preserve loop analyses, collect
// some information about how this split will affect loops.
bool HasLoopExit = false;
bool IsLoopEntry = !!L;
bool SplitMakesNewLoopHeader = false;
for (unsigned i = 0; i != NumPreds; ++i) {
// This is slightly more strict than necessary; the minimum requirement
// is that there be no more than one indirectbr branching to BB. And
// all BlockAddress uses would need to be updated.
assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
"Cannot split an edge from an IndirectBrInst");
Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
if (LI) {
// If we need to preserve LCSSA, determine if any of
// the preds is a loop exit.
if (PreserveLCSSA)
if (Loop *PL = LI->getLoopFor(Preds[i]))
if (!PL->contains(BB))
HasLoopExit = true;
// If we need to preserve LoopInfo, note whether any of the
// preds crosses an interesting loop boundary.
if (L) {
if (L->contains(Preds[i]))
IsLoopEntry = false;
else
SplitMakesNewLoopHeader = true;
}
}
}
// Update dominator tree and dominator frontier if available.
DominatorTree *DT = P ? P->getAnalysisIfAvailable<DominatorTree>() : 0;
if (DT)
DT->splitBlock(NewBB);
if (DominanceFrontier *DF = P ? P->getAnalysisIfAvailable<DominanceFrontier>():0)
DF->splitBlock(NewBB);
// Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
// node becomes an incoming value for BB's phi node. However, if the Preds
// list is empty, we need to insert dummy entries into the PHI nodes in BB to
// account for the newly created predecessor.
if (NumPreds == 0) {
// Insert dummy values as the incoming value.
for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
return NewBB;
}
AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0;
if (L) {
if (IsLoopEntry) {
// Add the new block to the nearest enclosing loop (and not an
// adjacent loop). To find this, examine each of the predecessors and
// determine which loops enclose them, and select the most-nested loop
// which contains the loop containing the block being split.
Loop *InnermostPredLoop = 0;
for (unsigned i = 0; i != NumPreds; ++i)
if (Loop *PredLoop = LI->getLoopFor(Preds[i])) {
// Seek a loop which actually contains the block being split (to
// avoid adjacent loops).
while (PredLoop && !PredLoop->contains(BB))
PredLoop = PredLoop->getParentLoop();
// Select the most-nested of these loops which contains the block.
if (PredLoop &&
PredLoop->contains(BB) &&
(!InnermostPredLoop ||
InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
InnermostPredLoop = PredLoop;
}
//.........这里部分代码省略.........
示例10: RemoveBlockIfDead
/// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
/// information, and remove any dead successors it has.
///
void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
std::vector<Instruction*> &Worklist,
Loop *L) {
if (pred_begin(BB) != pred_end(BB)) {
// This block isn't dead, since an edge to BB was just removed, see if there
// are any easy simplifications we can do now.
if (BasicBlock *Pred = BB->getSinglePredecessor()) {
// If it has one pred, fold phi nodes in BB.
while (isa<PHINode>(BB->begin()))
ReplaceUsesOfWith(BB->begin(),
cast<PHINode>(BB->begin())->getIncomingValue(0),
Worklist, L, LPM);
// If this is the header of a loop and the only pred is the latch, we now
// have an unreachable loop.
if (Loop *L = LI->getLoopFor(BB))
if (loopHeader == BB && L->contains(Pred)) {
// Remove the branch from the latch to the header block, this makes
// the header dead, which will make the latch dead (because the header
// dominates the latch).
LPM->deleteSimpleAnalysisValue(Pred->getTerminator(), L);
Pred->getTerminator()->eraseFromParent();
new UnreachableInst(BB->getContext(), Pred);
// The loop is now broken, remove it from LI.
RemoveLoopFromHierarchy(L);
// Reprocess the header, which now IS dead.
RemoveBlockIfDead(BB, Worklist, L);
return;
}
// If pred ends in a uncond branch, add uncond branch to worklist so that
// the two blocks will get merged.
if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
if (BI->isUnconditional())
Worklist.push_back(BI);
}
return;
}
DEBUG(dbgs() << "Nuking dead block: " << *BB);
// Remove the instructions in the basic block from the worklist.
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
RemoveFromWorklist(I, Worklist);
// Anything that uses the instructions in this basic block should have their
// uses replaced with undefs.
// If I is not void type then replaceAllUsesWith undef.
// This allows ValueHandlers and custom metadata to adjust itself.
if (!I->getType()->isVoidTy())
I->replaceAllUsesWith(UndefValue::get(I->getType()));
}
// If this is the edge to the header block for a loop, remove the loop and
// promote all subloops.
if (Loop *BBLoop = LI->getLoopFor(BB)) {
if (BBLoop->getLoopLatch() == BB) {
RemoveLoopFromHierarchy(BBLoop);
if (currentLoop == BBLoop) {
currentLoop = 0;
redoLoop = false;
}
}
}
// Remove the block from the loop info, which removes it from any loops it
// was in.
LI->removeBlock(BB);
// Remove phi node entries in successors for this block.
TerminatorInst *TI = BB->getTerminator();
SmallVector<BasicBlock*, 4> Succs;
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
Succs.push_back(TI->getSuccessor(i));
TI->getSuccessor(i)->removePredecessor(BB);
}
// Unique the successors, remove anything with multiple uses.
array_pod_sort(Succs.begin(), Succs.end());
Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end());
// Remove the basic block, including all of the instructions contained in it.
LPM->deleteSimpleAnalysisValue(BB, L);
BB->eraseFromParent();
// Remove successor blocks here that are not dead, so that we know we only
// have dead blocks in this list. Nondead blocks have a way of becoming dead,
// then getting removed before we revisit them, which is badness.
//
for (unsigned i = 0; i != Succs.size(); ++i)
if (pred_begin(Succs[i]) != pred_end(Succs[i])) {
// One exception is loop headers. If this block was the preheader for a
// loop, then we DO want to visit the loop so the loop gets deleted.
// We know that if the successor is a loop header, that this loop had to
// be the preheader: the case where this was the latch block was handled
//.........这里部分代码省略.........
示例11: shouldSpeculateInstrs
/// Determine whether the instructions in this range may be safely and cheaply
/// speculated. This is not an important enough situation to develop complex
/// heuristics. We handle a single arithmetic instruction along with any type
/// conversions.
static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
BasicBlock::iterator End, Loop *L) {
bool seenIncrement = false;
bool MultiExitLoop = false;
if (!L->getExitingBlock())
MultiExitLoop = true;
for (BasicBlock::iterator I = Begin; I != End; ++I) {
if (!isSafeToSpeculativelyExecute(I))
return false;
if (isa<DbgInfoIntrinsic>(I))
continue;
switch (I->getOpcode()) {
default:
return false;
case Instruction::GetElementPtr:
// GEPs are cheap if all indices are constant.
if (!cast<GEPOperator>(I)->hasAllConstantIndices())
return false;
// fall-thru to increment case
case Instruction::Add:
case Instruction::Sub:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr: {
Value *IVOpnd = !isa<Constant>(I->getOperand(0))
? I->getOperand(0)
: !isa<Constant>(I->getOperand(1))
? I->getOperand(1)
: nullptr;
if (!IVOpnd)
return false;
// If increment operand is used outside of the loop, this speculation
// could cause extra live range interference.
if (MultiExitLoop) {
for (User *UseI : IVOpnd->users()) {
auto *UserInst = cast<Instruction>(UseI);
if (!L->contains(UserInst))
return false;
}
}
if (seenIncrement)
return false;
seenIncrement = true;
break;
}
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
// ignore type conversions
break;
}
}
return true;
}
示例12: IsTrivialUnswitchCondition
/// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
/// trivial: that is, that the condition controls whether or not the loop does
/// anything at all. If this is a trivial condition, unswitching produces no
/// code duplications (equivalently, it produces a simpler loop and a new empty
/// loop, which gets deleted).
///
/// If this is a trivial condition, return true, otherwise return false. When
/// returning true, this sets Cond and Val to the condition that controls the
/// trivial condition: when Cond dynamically equals Val, the loop is known to
/// exit. Finally, this sets LoopExit to the BB that the loop exits to when
/// Cond == Val.
///
bool LoopUnswitch::IsTrivialUnswitchCondition(Value *Cond, Constant **Val,
BasicBlock **LoopExit) {
BasicBlock *Header = currentLoop->getHeader();
TerminatorInst *HeaderTerm = Header->getTerminator();
LLVMContext &Context = Header->getContext();
BasicBlock *LoopExitBB = 0;
if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
// If the header block doesn't end with a conditional branch on Cond, we
// can't handle it.
if (!BI->isConditional() || BI->getCondition() != Cond)
return false;
// Check to see if a successor of the branch is guaranteed to
// exit through a unique exit block without having any
// side-effects. If so, determine the value of Cond that causes it to do
// this.
if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
BI->getSuccessor(0)))) {
if (Val) *Val = ConstantInt::getTrue(Context);
} else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
BI->getSuccessor(1)))) {
if (Val) *Val = ConstantInt::getFalse(Context);
}
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
// If this isn't a switch on Cond, we can't handle it.
if (SI->getCondition() != Cond) return false;
// Check to see if a successor of the switch is guaranteed to go to the
// latch block or exit through a one exit block without having any
// side-effects. If so, determine the value of Cond that causes it to do
// this.
// Note that we can't trivially unswitch on the default case or
// on already unswitched cases.
for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
i != e; ++i) {
BasicBlock* LoopExitCandidate;
if ((LoopExitCandidate = isTrivialLoopExitBlock(currentLoop,
i.getCaseSuccessor()))) {
// Okay, we found a trivial case, remember the value that is trivial.
ConstantInt* CaseVal = i.getCaseValue();
// Check that it was not unswitched before, since already unswitched
// trivial vals are looks trivial too.
if (BranchesInfo.isUnswitched(SI, CaseVal))
continue;
LoopExitBB = LoopExitCandidate;
if (Val) *Val = CaseVal;
break;
}
}
}
// If we didn't find a single unique LoopExit block, or if the loop exit block
// contains phi nodes, this isn't trivial.
if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
return false; // Can't handle this.
if (LoopExit) *LoopExit = LoopExitBB;
// We already know that nothing uses any scalar values defined inside of this
// loop. As such, we just have to check to see if this loop will execute any
// side-effecting instructions (e.g. stores, calls, volatile loads) in the
// part of the loop that the code *would* execute. We already checked the
// tail, check the header now.
for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
if (I->mayHaveSideEffects())
return false;
return true;
}
示例13: EraseInstFromFunction
Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
Value *Val = SI.getOperand(0);
Value *Ptr = SI.getOperand(1);
// Try to canonicalize the stored type.
if (combineStoreToValueType(*this, SI))
return EraseInstFromFunction(SI);
// Attempt to improve the alignment.
unsigned KnownAlign = getOrEnforceKnownAlignment(
Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, AC, DT);
unsigned StoreAlign = SI.getAlignment();
unsigned EffectiveStoreAlign =
StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType());
if (KnownAlign > EffectiveStoreAlign)
SI.setAlignment(KnownAlign);
else if (StoreAlign == 0)
SI.setAlignment(EffectiveStoreAlign);
// Try to canonicalize the stored type.
if (unpackStoreToAggregate(*this, SI))
return EraseInstFromFunction(SI);
// Replace GEP indices if possible.
if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
Worklist.Add(NewGEPI);
return &SI;
}
// Don't hack volatile/atomic stores.
// FIXME: Some bits are legal for atomic stores; needs refactoring.
if (!SI.isSimple()) return nullptr;
// If the RHS is an alloca with a single use, zapify the store, making the
// alloca dead.
if (Ptr->hasOneUse()) {
if (isa<AllocaInst>(Ptr))
return EraseInstFromFunction(SI);
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
if (isa<AllocaInst>(GEP->getOperand(0))) {
if (GEP->getOperand(0)->hasOneUse())
return EraseInstFromFunction(SI);
}
}
}
// Do really simple DSE, to catch cases where there are several consecutive
// stores to the same location, separated by a few arithmetic operations. This
// situation often occurs with bitfield accesses.
BasicBlock::iterator BBI = &SI;
for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
--ScanInsts) {
--BBI;
// Don't count debug info directives, lest they affect codegen,
// and we skip pointer-to-pointer bitcasts, which are NOPs.
if (isa<DbgInfoIntrinsic>(BBI) ||
(isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
ScanInsts++;
continue;
}
if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
// Prev store isn't volatile, and stores to the same location?
if (PrevSI->isSimple() && equivalentAddressValues(PrevSI->getOperand(1),
SI.getOperand(1))) {
++NumDeadStore;
++BBI;
EraseInstFromFunction(*PrevSI);
continue;
}
break;
}
// If this is a load, we have to stop. However, if the loaded value is from
// the pointer we're loading and is producing the pointer we're storing,
// then *this* store is dead (X = load P; store X -> P).
if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
LI->isSimple())
return EraseInstFromFunction(SI);
// Otherwise, this is a load from some other location. Stores before it
// may not be dead.
break;
}
// Don't skip over loads or things that can modify memory.
if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
break;
}
// store X, null -> turns into 'unreachable' in SimplifyCFG
if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
if (!isa<UndefValue>(Val)) {
SI.setOperand(0, UndefValue::get(Val->getType()));
if (Instruction *U = dyn_cast<Instruction>(Val))
Worklist.Add(U); // Dropped a use.
}
return nullptr; // Do not modify these!
//.........这里部分代码省略.........
示例14: mightUseCTR
bool PPCCTRLoops::mightUseCTR(const Triple &TT, BasicBlock *BB) {
for (BasicBlock::iterator J = BB->begin(), JE = BB->end();
J != JE; ++J) {
if (CallInst *CI = dyn_cast<CallInst>(J)) {
if (InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue())) {
// Inline ASM is okay, unless it clobbers the ctr register.
InlineAsm::ConstraintInfoVector CIV = IA->ParseConstraints();
for (unsigned i = 0, ie = CIV.size(); i < ie; ++i) {
InlineAsm::ConstraintInfo &C = CIV[i];
if (C.Type != InlineAsm::isInput)
for (unsigned j = 0, je = C.Codes.size(); j < je; ++j)
if (StringRef(C.Codes[j]).equals_lower("{ctr}"))
return true;
}
continue;
}
if (!TM)
return true;
const TargetLowering *TLI = TM->getTargetLowering();
if (Function *F = CI->getCalledFunction()) {
// Most intrinsics don't become function calls, but some might.
// sin, cos, exp and log are always calls.
unsigned Opcode;
if (F->getIntrinsicID() != Intrinsic::not_intrinsic) {
switch (F->getIntrinsicID()) {
default: continue;
// VisualStudio defines setjmp as _setjmp
#if defined(_MSC_VER) && defined(setjmp) && \
!defined(setjmp_undefined_for_msvc)
# pragma push_macro("setjmp")
# undef setjmp
# define setjmp_undefined_for_msvc
#endif
case Intrinsic::setjmp:
#if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)
// let's return it to _setjmp state
# pragma pop_macro("setjmp")
# undef setjmp_undefined_for_msvc
#endif
case Intrinsic::longjmp:
// Exclude eh_sjlj_setjmp; we don't need to exclude eh_sjlj_longjmp
// because, although it does clobber the counter register, the
// control can't then return to inside the loop unless there is also
// an eh_sjlj_setjmp.
case Intrinsic::eh_sjlj_setjmp:
case Intrinsic::memcpy:
case Intrinsic::memmove:
case Intrinsic::memset:
case Intrinsic::powi:
case Intrinsic::log:
case Intrinsic::log2:
case Intrinsic::log10:
case Intrinsic::exp:
case Intrinsic::exp2:
case Intrinsic::pow:
case Intrinsic::sin:
case Intrinsic::cos:
return true;
case Intrinsic::copysign:
if (CI->getArgOperand(0)->getType()->getScalarType()->
isPPC_FP128Ty())
return true;
else
continue; // ISD::FCOPYSIGN is never a library call.
case Intrinsic::sqrt: Opcode = ISD::FSQRT; break;
case Intrinsic::floor: Opcode = ISD::FFLOOR; break;
case Intrinsic::ceil: Opcode = ISD::FCEIL; break;
case Intrinsic::trunc: Opcode = ISD::FTRUNC; break;
case Intrinsic::rint: Opcode = ISD::FRINT; break;
case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
case Intrinsic::round: Opcode = ISD::FROUND; break;
}
}
// PowerPC does not use [US]DIVREM or other library calls for
// operations on regular types which are not otherwise library calls
// (i.e. soft float or atomics). If adapting for targets that do,
// additional care is required here.
LibFunc::Func Func;
if (!F->hasLocalLinkage() && F->hasName() && LibInfo &&
LibInfo->getLibFunc(F->getName(), Func) &&
LibInfo->hasOptimizedCodeGen(Func)) {
// Non-read-only functions are never treated as intrinsics.
if (!CI->onlyReadsMemory())
return true;
// Conversion happens only for FP calls.
if (!CI->getArgOperand(0)->getType()->isFloatingPointTy())
return true;
//.........这里部分代码省略.........
示例15: getOperandName
string getOperandName(BasicBlock::iterator inst)
{
return (inst->getOperand(1))->getName().str();
}