当前位置: 首页>>代码示例>>C++>>正文


C++ utils::MS方法代码示例

本文整理汇总了C++中utils::MS方法的典型用法代码示例。如果您正苦于以下问题:C++ utils::MS方法的具体用法?C++ utils::MS怎么用?C++ utils::MS使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在utils的用法示例。


在下文中一共展示了utils::MS方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: MS

Conf& Conf::def_choice(std::string name,
                       std::vector<std::string> choices,
                       std::string default_value) {
    assert2(in_vector(choices, default_value),
        MS() << default_value << " is not an option for " << name);
    assert2(choices.size() >= 2,
        MS() << "At least two choices are needed for " << name);
    auto c = make_shared<Choice>();
    c->choices = choices;
    c->default_value = default_value;
    c->value = default_value;


    items[name] = c;
    return *this;
}
开发者ID:bhack,项目名称:Dali,代码行数:16,代码来源:configuration.cpp

示例2: training_loop

void training_loop(std::shared_ptr<Solver::AbstractSolver<REAL_t>> solver,
                   model_t& model,
                   std::function<vector<uint>(vector<uint>&)> pred_fun,
                   vector<numeric_example_t>& train,
                   vector<numeric_example_t>& validate) {
    auto& vocab = arithmetic::vocabulary;

    auto params = model.parameters();

    int epoch = 0;
    int difficulty_waiting = 0;
    auto end_symbol_idx = vocab.word2index[utils::end_symbol];

    int beam_width = FLAGS_beam_width;

    if (beam_width < 1)
        utils::exit_with_message(MS() << "Beam width must be strictly positive (got " << beam_width << ")");

    Throttled throttled_examples;
    Throttled throttled_validation;

    bool target_accuracy_reached = false;

    while (!target_accuracy_reached && epoch++ < FLAGS_graduation_time) {

        auto indices = utils::random_arange(train.size());
        auto indices_begin = indices.begin();

        REAL_t minibatch_error = 0.0;

        // one minibatch
        for (auto indices_begin = indices.begin();
                indices_begin < indices.begin() + std::min((size_t)FLAGS_minibatch, train.size());
                indices_begin++) {
            // <training>
            auto& example = train[*indices_begin];

            auto error = model.error(example, beam_width);
            error.grad();
            graph::backward();
            minibatch_error += error.w(0);
            // </training>
            // // <reporting>
            throttled_examples.maybe_run(seconds(10), [&]() {
                graph::NoBackprop nb;
                auto random_example_index = utils::randint(0, validate.size() -1);
                auto& expression = validate[random_example_index].first;
                auto predictions = model.predict(expression,
                                                 beam_width,
                                                 MAX_OUTPUT_LENGTH,
                                                 vocab.word2index.at(utils::end_symbol));

                auto expression_string = arithmetic::vocabulary.decode(&expression);
                if (expression_string.back() == utils::end_symbol)
                    expression_string.resize(expression_string.size() - 1);
                std::cout << utils::join(expression_string) << std::endl;


                vector<string> prediction_string;
                vector<double> prediction_probability;

                for (auto& prediction : predictions) {
                    if (validate[random_example_index].second == prediction.prediction) {
                        std::cout << utils::green;
                    }
                    prediction_probability.push_back(prediction.get_probability().w(0));
                    std::cout << "= (" << std::setprecision( 3 ) << prediction.get_probability().log().w(0) << ") ";
                    auto digits = vocab.decode(&prediction.prediction);
                    if (digits.back() == utils::end_symbol)
                        digits.pop_back();
                    auto joined_digits = utils::join(digits);
                    prediction_string.push_back(joined_digits);
                    std::cout << joined_digits << utils::reset_color << std::endl;
                }
                auto vgrid = make_shared<visualizable::GridLayout>();

                assert2(predictions[0].derivations.size() == predictions[0].nodes.size(),
                        "Szymon messed up.");
                for (int didx = 0;
                        didx < min((size_t)FLAGS_visualizer_trees, predictions[0].derivations.size());
                        ++didx) {
                    auto visualization = visualize_derivation(
                                             predictions[0].derivations[didx],
                                             vocab.decode(&expression)
                                         );
                    auto tree_prob = predictions[0].nodes[didx].log_probability.exp().w(0,0);
                    vgrid->add_in_column(0, make_shared<visualizable::Probability<double>>(tree_prob));
                    vgrid->add_in_column(0, visualization);
                }
                vgrid->add_in_column(1, make_shared<visualizable::Sentence<double>>(expression_string));
                vgrid->add_in_column(1, make_shared<visualizable::FiniteDistribution<double>>(
                                         prediction_probability,
                                         prediction_string
                                     ));

                if (visualizer)
                    visualizer->feed(vgrid->to_json());

            });
            double current_accuracy = -1;
//.........这里部分代码省略.........
开发者ID:codeaudit,项目名称:Dali,代码行数:101,代码来源:beam_tree_training.cpp


注:本文中的utils::MS方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。