当前位置: 首页>>代码示例>>C++>>正文


C++ ofVec3f::lengthSquared方法代码示例

本文整理汇总了C++中ofVec3f::lengthSquared方法的典型用法代码示例。如果您正苦于以下问题:C++ ofVec3f::lengthSquared方法的具体用法?C++ ofVec3f::lengthSquared怎么用?C++ ofVec3f::lengthSquared使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在ofVec3f的用法示例。


在下文中一共展示了ofVec3f::lengthSquared方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: makeRotate

/** Make a rotation Quat which will rotate vec1 to vec2

 This routine uses only fast geometric transforms, without costly acos/sin computations.
 It's exact, fast, and with less degenerate cases than the acos/sin method.

 For an explanation of the math used, you may see for example:
 http://logiciels.cnes.fr/MARMOTTES/marmottes-mathematique.pdf

 @note This is the rotation with shortest angle, which is the one equivalent to the
 acos/sin transform method. Other rotations exists, for example to additionally keep
 a local horizontal attitude.

 @author Nicolas Brodu
 */
void ofQuaternion::makeRotate( const ofVec3f& from, const ofVec3f& to ) {

	// This routine takes any vector as argument but normalized
	// vectors are necessary, if only for computing the dot product.
	// Too bad the API is that generic, it leads to performance loss.
	// Even in the case the 2 vectors are not normalized but same length,
	// the sqrt could be shared, but we have no way to know beforehand
	// at this point, while the caller may know.
	// So, we have to test... in the hope of saving at least a sqrt
	ofVec3f sourceVector = from;
	ofVec3f targetVector = to;

	float fromLen2 = from.lengthSquared();
	float fromLen;
	// normalize only when necessary, epsilon test
	if ((fromLen2 < 1.0 - 1e-7) || (fromLen2 > 1.0 + 1e-7)) {
		fromLen = sqrt(fromLen2);
		sourceVector /= fromLen;
	} else fromLen = 1.0;

	float toLen2 = to.lengthSquared();
	// normalize only when necessary, epsilon test
	if ((toLen2 < 1.0 - 1e-7) || (toLen2 > 1.0 + 1e-7)) {
		float toLen;
		// re-use fromLen for case of mapping 2 vectors of the same length
		if ((toLen2 > fromLen2 - 1e-7) && (toLen2 < fromLen2 + 1e-7)) {
			toLen = fromLen;
		} else toLen = sqrt(toLen2);
		targetVector /= toLen;
	}


	// Now let's get into the real stuff
	// Use "dot product plus one" as test as it can be re-used later on
	double dotProdPlus1 = 1.0 + sourceVector.dot(targetVector);

	// Check for degenerate case of full u-turn. Use epsilon for detection
	if (dotProdPlus1 < 1e-7) {

		// Get an orthogonal vector of the given vector
		// in a plane with maximum vector coordinates.
		// Then use it as quaternion axis with pi angle
		// Trick is to realize one value at least is >0.6 for a normalized vector.
		if (fabs(sourceVector.x) < 0.6) {
			const double norm = sqrt(1.0 - sourceVector.x * sourceVector.x);
			_v[0] = 0.0;
			_v[1] = sourceVector.z / norm;
			_v[2] = -sourceVector.y / norm;
			_v[3] = 0.0;
		} else if (fabs(sourceVector.y) < 0.6) {
			const double norm = sqrt(1.0 - sourceVector.y * sourceVector.y);
			_v[0] = -sourceVector.z / norm;
			_v[1] = 0.0;
			_v[2] = sourceVector.x / norm;
			_v[3] = 0.0;
		} else {
			const double norm = sqrt(1.0 - sourceVector.z * sourceVector.z);
			_v[0] = sourceVector.y / norm;
			_v[1] = -sourceVector.x / norm;
			_v[2] = 0.0;
			_v[3] = 0.0;
		}
	}

	else {
		// Find the shortest angle quaternion that transforms normalized vectors
		// into one other. Formula is still valid when vectors are colinear
		const double s = sqrt(0.5 * dotProdPlus1);
		const ofVec3f tmp = sourceVector.getCrossed(targetVector) / (2.0 * s);
		_v[0] = tmp.x;
		_v[1] = tmp.y;
		_v[2] = tmp.z;
		_v[3] = s;
	}
}
开发者ID:terminalB,项目名称:openFrameworks,代码行数:89,代码来源:ofQuaternion.cpp


注:本文中的ofVec3f::lengthSquared方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。