本文整理汇总了C++中ofVec3f::getCrossed方法的典型用法代码示例。如果您正苦于以下问题:C++ ofVec3f::getCrossed方法的具体用法?C++ ofVec3f::getCrossed怎么用?C++ ofVec3f::getCrossed使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类ofVec3f
的用法示例。
在下文中一共展示了ofVec3f::getCrossed方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: GrainViewTransform
ofVec3f GrainViewTransform(ofVec3f InPutPoint, ofVec3f Eye, ofVec3f Target, ofVec3f UpVec){
// Transform the cordinates of a point InPutPoint. For a camera placed at Eye and looking at target with Up vector UpVec
ofMatrix4x4 ViewMat;
ofVec3f zaxis(Target - Eye);
zaxis.normalize();
ofVec3f xaxis = UpVec.getCrossed(zaxis);
xaxis.normalize();
ofVec3f yaxis = zaxis.getCrossed(xaxis);
// translate vect
InPutPoint -= Eye;
// project on each axis
ofVec3f Outpos;
Outpos.x = -xaxis.dot(InPutPoint);
Outpos.y = -yaxis.dot(InPutPoint);
Outpos.z = zaxis.dot(InPutPoint);
return Outpos;
}
示例2: lookAt
//----------------------------------------
void ofNode::lookAt(const ofVec3f& lookAtPosition, ofVec3f upVector) {
if(parent) upVector = upVector * ofMatrix4x4::getInverseOf(parent->getGlobalTransformMatrix());
ofVec3f zaxis = (getGlobalPosition() - lookAtPosition).normalized();
ofVec3f xaxis = upVector.getCrossed(zaxis).normalized();
ofVec3f yaxis = zaxis.getCrossed(xaxis);
ofMatrix4x4 m;
m._mat[0].set(xaxis.x, xaxis.y, xaxis.z, 0);
m._mat[1].set(yaxis.x, yaxis.y, yaxis.z, 0);
m._mat[2].set(zaxis.x, zaxis.y, zaxis.z, 0);
setGlobalOrientation(m.getRotate());
}
示例3: slerp
void Creature::slerp(const ofVec3f& target, const ofVec3f& upVector)
{
ofVec3f zaxis = (getPosition() - target).normalized();
ofVec3f xaxis = upVector.getCrossed(zaxis).normalized();
ofVec3f yaxis = zaxis.getCrossed(xaxis);
ofMatrix4x4 m;
m._mat[0].set(xaxis.x, xaxis.y, xaxis.z, 0);
m._mat[1].set(yaxis.x, yaxis.y, yaxis.z, 0);
m._mat[2].set(zaxis.x, zaxis.y, zaxis.z, 0);
ofQuaternion targetQuat = m.getRotate();
ofQuaternion currentQuat = getOrientationQuat();
currentQuat.slerp(0.1, currentQuat, targetQuat);
setOrientation(currentQuat);
}
示例4: makeRotate
// if axis1 and axis2 are not orthogonal, only axis1 will be preserved
ofQuaternion makeRotate(const ofVec3f& axis1, const ofVec3f& axis2) {
ofVec3f avg = (axis1 + axis2) / 2;
ofVec3f z = axis1.getCrossed(axis2);
ofVec3f x = axis1;
ofVec3f y = z.getCrossed(x);
ofMatrix4x4 mat;
vector<ofVec3f> axes;
axes.push_back(x.normalize());
axes.push_back(y.normalize());
axes.push_back(z.normalize());
for(int i = 0; i < 3; i++) {
for(int j = 0; j < 3; j++) {
mat(i, j) = axes[i][j];
}
}
return mat.getRotate();
}
示例5: makeRotate_original
// Make a rotation Quat which will rotate vec1 to vec2
// Generally take adot product to get the angle between these
// and then use a cross product to get the rotation axis
// Watch out for the two special cases of when the vectors
// are co-incident or opposite in direction.
void ofQuaternion::makeRotate_original( const ofVec3f& from, const ofVec3f& to ) {
const float epsilon = 0.0000001f;
float length1 = from.length();
float length2 = to.length();
// dot product vec1*vec2
float cosangle = from.dot(to) / (length1 * length2);
if ( fabs(cosangle - 1) < epsilon ) {
//osg::notify(osg::INFO)<<"*** Quat::makeRotate(from,to) with near co-linear vectors, epsilon= "<<fabs(cosangle-1)<<std::endl;
// cosangle is close to 1, so the vectors are close to being coincident
// Need to generate an angle of zero with any vector we like
// We'll choose (1,0,0)
makeRotate( 0.0, 0.0, 0.0, 1.0 );
} else
if ( fabs(cosangle + 1.0) < epsilon ) {
// vectors are close to being opposite, so will need to find a
// vector orthongonal to from to rotate about.
ofVec3f tmp;
if (fabs(from.x) < fabs(from.y))
if (fabs(from.x) < fabs(from.z)) tmp.set(1.0, 0.0, 0.0); // use x axis.
else tmp.set(0.0, 0.0, 1.0);
else if (fabs(from.y) < fabs(from.z)) tmp.set(0.0, 1.0, 0.0);
else tmp.set(0.0, 0.0, 1.0);
ofVec3f fromd(from.x, from.y, from.z);
// find orthogonal axis.
ofVec3f axis(fromd.getCrossed(tmp));
axis.normalize();
_v[0] = axis[0]; // sin of half angle of PI is 1.0.
_v[1] = axis[1]; // sin of half angle of PI is 1.0.
_v[2] = axis[2]; // sin of half angle of PI is 1.0.
_v[3] = 0; // cos of half angle of PI is zero.
} else {
// This is the usual situation - take a cross-product of vec1 and vec2
// and that is the axis around which to rotate.
ofVec3f axis(from.getCrossed(to));
float angle = acos( cosangle );
makeRotate( angle, axis );
}
}