当前位置: 首页>>代码示例>>C++>>正文


C++ layer_configuration_specific::get_neuron_count_per_feature_map方法代码示例

本文整理汇总了C++中layer_configuration_specific::get_neuron_count_per_feature_map方法的典型用法代码示例。如果您正苦于以下问题:C++ layer_configuration_specific::get_neuron_count_per_feature_map方法的具体用法?C++ layer_configuration_specific::get_neuron_count_per_feature_map怎么用?C++ layer_configuration_specific::get_neuron_count_per_feature_map使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在layer_configuration_specific的用法示例。


在下文中一共展示了layer_configuration_specific::get_neuron_count_per_feature_map方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: neural_network_exception

	void flip_2d_data_sampler_transformer::transform(
		const void * data,
		void * data_transformed,
		neuron_data_type::input_type type,
		const layer_configuration_specific& original_config,
		unsigned int sample_id)
	{
		if (type != neuron_data_type::type_byte)
			throw neural_network_exception("flip_2d_data_sampler_transformer is implemented for data stored as bytes only");

		if (original_config.dimension_sizes.size() != 2)
			throw neural_network_exception((boost::format("flip_2d_data_sampler_transformer is processing 2d data only, data is passed with number of dimensions %1%") % original_config.dimension_sizes.size()).str());

		unsigned int neuron_count_per_feature_map = original_config.get_neuron_count_per_feature_map();
		for(unsigned int feature_map_id = 0; feature_map_id < original_config.feature_map_count; ++feature_map_id)
		{
			cv::Mat1b src_image(static_cast<int>(original_config.dimension_sizes[1]), static_cast<int>(original_config.dimension_sizes[0]), const_cast<unsigned char *>(static_cast<const unsigned char *>(data)) + (neuron_count_per_feature_map * feature_map_id));
			cv::Mat1b image(static_cast<int>(original_config.dimension_sizes[1]), static_cast<int>(original_config.dimension_sizes[0]), static_cast<unsigned char *>(data_transformed) + (neuron_count_per_feature_map * feature_map_id));
			memcpy(
				((unsigned char *)data_transformed) + neuron_count_per_feature_map * feature_map_id,
				((unsigned char *)data) + neuron_count_per_feature_map * feature_map_id,
				neuron_count_per_feature_map * neuron_data_type::get_input_size(type));

			if (sample_id == 1)
			{
				data_transformer_util::flip(
					image,
					(flip_around_dimension_id == 0),
					(flip_around_dimension_id == 1));
			}
		}
	}
开发者ID:Alienfeel,项目名称:nnForge,代码行数:32,代码来源:flip_2d_data_sampler_transformer.cpp

示例2: configure

		void layer_updater_cuda::configure(
			const std::vector<layer_configuration_specific>& input_configuration_specific_list,
			const layer_configuration_specific& output_configuration_specific,
			layer::const_ptr layer_schema,
			cuda_running_configuration::const_ptr cuda_config,
			const std::set<layer_action>& actions)
		{
			this->layer_schema = layer_schema;
			this->input_configuration_specific_list = input_configuration_specific_list;
			this->output_configuration_specific = output_configuration_specific;
			this->cuda_config = cuda_config;
			this->actions = actions;

			input_elem_count_per_entry_list.resize(input_configuration_specific_list.size());
			input_elem_count_per_feature_map_list.resize(input_configuration_specific_list.size());
			for(int i = 0; i < input_configuration_specific_list.size(); ++i)
			{
				input_elem_count_per_entry_list[i] = input_configuration_specific_list[i].get_neuron_count();
				input_elem_count_per_feature_map_list[i] = input_configuration_specific_list[i].get_neuron_count_per_feature_map();
			}

			output_elem_count_per_entry = output_configuration_specific.get_neuron_count();
			output_elem_count_per_feature_map = output_configuration_specific.get_neuron_count_per_feature_map();

			updater_configured();
		}
开发者ID:anshumang,项目名称:nnForge,代码行数:26,代码来源:layer_updater_cuda.cpp

示例3: run_forward_propagation

		void rgb_to_yuv_convert_layer_tester_plain::run_forward_propagation(
			plain_buffer::ptr output_buffer,
			const std::vector<plain_buffer::const_ptr>& input_buffers,
			plain_buffer::ptr temporary_working_fixed_buffer,
			plain_buffer::ptr temporary_working_per_entry_buffer,
			plain_running_configuration::const_ptr plain_config,
			layer::const_ptr layer_schema,
			layer_data::const_ptr data,
			layer_data_custom::const_ptr data_custom,
			const std::vector<layer_configuration_specific>& input_configuration_specific_list,
			const layer_configuration_specific& output_configuration_specific,
			unsigned int entry_count) const
		{
			const float * const in_it = *input_buffers[0];
			float * const out_it = *output_buffer;

			nnforge_shared_ptr<const rgb_to_yuv_convert_layer> layer_derived = nnforge_dynamic_pointer_cast<const rgb_to_yuv_convert_layer>(layer_schema);

			const unsigned int color_feature_map_config_count = static_cast<unsigned int>(layer_derived->color_feature_map_config_list.size());

			if ((out_it != in_it) && ((color_feature_map_config_count * 3) != output_configuration_specific.feature_map_count))
				memcpy(out_it, in_it, output_configuration_specific.get_neuron_count() * entry_count * sizeof(float));

			const int total_workload = static_cast<int>(entry_count * color_feature_map_config_count);

			const unsigned int input_neuron_count = output_configuration_specific.get_neuron_count();
			const unsigned int input_neuron_count_per_feature_map = output_configuration_specific.get_neuron_count_per_feature_map();
			const std::vector<color_feature_map_config>::const_iterator cfm_it = layer_derived->color_feature_map_config_list.begin();

			#pragma omp parallel for default(none) schedule(guided) num_threads(plain_config->openmp_thread_count)
			for(int workload_id = 0; workload_id < total_workload; ++workload_id)
			{
				int entry_id = workload_id / color_feature_map_config_count;
				int color_feature_map_config_id = workload_id - entry_id * color_feature_map_config_count;
				const color_feature_map_config& cfm = *(cfm_it + color_feature_map_config_id);

				const float * in_it_red_and_y = in_it + (entry_id * input_neuron_count) + (cfm.red_and_y_feature_map_id * input_neuron_count_per_feature_map);
				const float * in_it_green_and_u = in_it + (entry_id * input_neuron_count) + (cfm.green_and_u_feature_map_id * input_neuron_count_per_feature_map);
				const float * in_it_blue_and_v = in_it + (entry_id * input_neuron_count) + (cfm.blue_and_v_feature_map_id * input_neuron_count_per_feature_map);

				float * out_it_red_and_y = out_it + (entry_id * input_neuron_count) + (cfm.red_and_y_feature_map_id * input_neuron_count_per_feature_map);
				float * out_it_green_and_u = out_it + (entry_id * input_neuron_count) + (cfm.green_and_u_feature_map_id * input_neuron_count_per_feature_map);
				float * out_it_blue_and_v = out_it + (entry_id * input_neuron_count) + (cfm.blue_and_v_feature_map_id * input_neuron_count_per_feature_map);

				for(unsigned int i = 0; i < input_neuron_count_per_feature_map; ++i)
				{
					float red = in_it_red_and_y[i];
					float green = in_it_green_and_u[i];
					float blue = in_it_blue_and_v[i];

					float y = w_r * red + w_g * green + w_b * blue;
					float u = u_mult * (blue - y);
					float v = v_mult * (red - y);

					out_it_red_and_y[i] = y;
					out_it_green_and_u[i] = u;
					out_it_blue_and_v[i] = v;
				}
			}
		}
开发者ID:anshumang,项目名称:nnForge,代码行数:60,代码来源:rgb_to_yuv_convert_layer_tester_plain.cpp

示例4: neural_network_exception

	void intensity_2d_data_transformer::transform(
		const void * data,
		void * data_transformed,
		neuron_data_type::input_type type,
		const layer_configuration_specific& original_config)
	{
		if (type != neuron_data_type::type_byte)
			throw neural_network_exception("intensity_2d_data_transformer is implemented for data stored as bytes only");

		if (original_config.dimension_sizes.size() != 2)
			throw neural_network_exception((boost::format("intensity_2d_data_transformer is processing 2d data only, data is passed with number of dimensions %1%") % original_config.dimension_sizes.size()).str());

		float contrast = contrast_distribution(generator);
		float brightness_shift = brightness_shift_distribution(generator) * 255.0F;

		unsigned int neuron_count_per_feature_map = original_config.get_neuron_count_per_feature_map();
		for(unsigned int feature_map_id = 0; feature_map_id < original_config.feature_map_count; ++feature_map_id)
		{
			cv::Mat1b image(static_cast<int>(original_config.dimension_sizes[1]), static_cast<int>(original_config.dimension_sizes[0]), static_cast<unsigned char *>(data_transformed) + (neuron_count_per_feature_map * feature_map_id));

			data_transformer_util::change_brightness_and_contrast(
				image,
				contrast,
				brightness_shift);
		}
	}
开发者ID:lukastencer,项目名称:nnForge,代码行数:26,代码来源:intensity_2d_data_transformer.cpp

示例5: transform

	void convert_to_polar_data_transformer::transform(
		const void * data,
		void * data_transformed,
		neuron_data_type::input_type type,
		const layer_configuration_specific& original_config,
		unsigned int sample_id)
	{
		if (type != neuron_data_type::type_byte)
			throw neural_network_exception("convert_to_polar_data_transformer is implemented for data stored as bytes only");

		if (original_config.dimension_sizes.size() != 2)
			throw neural_network_exception((boost::format("convert_to_polar_data_transformer is processing 2D data only, data is passed with number of dimensions %1%") % original_config.dimension_sizes.size()).str());

		if (original_config.dimension_sizes != input_window_sizes)
			throw neural_network_exception("convert_to_polar_data_transformer: input window size mismatch between creation and actual transform");

		unsigned int original_neuron_count_per_feature_map = original_config.get_neuron_count_per_feature_map();
		unsigned int transformed_neuron_count_per_feature_map = get_transformed_configuration(original_config).get_neuron_count_per_feature_map();
		for(unsigned int feature_map_id = 0; feature_map_id < original_config.feature_map_count; ++feature_map_id)
		{
			cv::Mat1b original_image(static_cast<int>(original_config.dimension_sizes[1]), static_cast<int>(original_config.dimension_sizes[0]), const_cast<unsigned char *>(static_cast<const unsigned char *>(data)) + (original_neuron_count_per_feature_map * feature_map_id));
			cv::Mat1b dest_image(static_cast<int>(output_window_sizes[1]), static_cast<int>(output_window_sizes[0]), static_cast<unsigned char *>(data_transformed) + (transformed_neuron_count_per_feature_map * feature_map_id));

			// Should try INTER_CUBIC and INTER_LANCZOS4 as well
			cv::remap(original_image, dest_image, map_x, map_y, cv::INTER_LINEAR, cv::BORDER_CONSTANT, border_value);
		}
	}
开发者ID:anshumang,项目名称:nnForgeINST,代码行数:27,代码来源:convert_to_polar_data_transformer.cpp

示例6: test

		void softmax_layer_hessian_plain::test(
			const_additional_buffer_smart_ptr input_buffer,
			additional_buffer_smart_ptr output_buffer,
			std::vector<additional_buffer_smart_ptr>& additional_buffers,
			plain_running_configuration_const_smart_ptr plain_config,
			const_layer_smart_ptr layer_schema,
			const_layer_data_smart_ptr data,
			const_layer_data_custom_smart_ptr data_custom,
			const layer_configuration_specific& input_configuration_specific,
			const layer_configuration_specific& output_configuration_specific,
			unsigned int entry_count) const
		{
			const unsigned int input_neuron_count = input_configuration_specific.get_neuron_count();
			const unsigned int input_neuron_count_per_feature_map = input_configuration_specific.get_neuron_count_per_feature_map();
			const unsigned int feature_map_count = static_cast<unsigned int>(input_configuration_specific.feature_map_count);

			const std::vector<float>::const_iterator input_buffer_it = input_buffer->begin();
			const std::vector<float>::iterator output_buffer_it = output_buffer->begin();

			const int total_workload = entry_count * input_neuron_count_per_feature_map;
			const int openmp_thread_count = plain_config->openmp_thread_count;
			
			#pragma omp parallel default(none) shared(additional_buffers) num_threads(openmp_thread_count)
			{
				int thread_id = 0;
				#ifdef _OPENMP
				thread_id = omp_get_thread_num();
				#endif

				std::vector<float>& local_additional_buffer = *(additional_buffers[thread_id]);

				#pragma omp for schedule(guided)
				for(int workload_id = 0; workload_id < total_workload; ++workload_id)
				{
					int entry_id = workload_id / input_neuron_count_per_feature_map;
					int neuron_id = workload_id - (entry_id * input_neuron_count_per_feature_map);

					const std::vector<float>::const_iterator in_it = input_buffer_it + (entry_id * input_neuron_count) + neuron_id;
					const std::vector<float>::iterator out_it = output_buffer_it + (entry_id * input_neuron_count) + neuron_id;

					float max_val = -1.0e+37F;
					for(unsigned int feature_map_id = 0; feature_map_id < feature_map_count; ++feature_map_id)
					{
						float val = *(in_it + (feature_map_id * input_neuron_count_per_feature_map));
						max_val = std::max(max_val, val);
					}

					float sum = 0.0F;
					for(unsigned int feature_map_id = 0; feature_map_id < feature_map_count; ++feature_map_id)
					{
						float val = expf((*(in_it + (feature_map_id * input_neuron_count_per_feature_map))) - max_val);
						sum += val;
						local_additional_buffer[feature_map_id] = val;
					}
					float mult = 1.0F / sum;
					for(unsigned int feature_map_id = 0; feature_map_id < feature_map_count; ++feature_map_id)
						*(out_it + (feature_map_id * input_neuron_count_per_feature_map)) = local_additional_buffer[feature_map_id] * mult;
				} // for(int workload_id
			} // #pragma parallel
		}
开发者ID:bluelzx,项目名称:nnForge,代码行数:60,代码来源:softmax_layer_hessian_plain.cpp

示例7: transform

	void uniform_intensity_data_transformer::transform(
		const float * data,
		float * data_transformed,
		const layer_configuration_specific& original_config,
		unsigned int sample_id)
	{
		if (original_config.feature_map_count != shift_distribution_list.size())
			throw neural_network_exception((boost::format("uniform_intensity_data_transformer was initialized with %1% distributions and data provided has %2% feature maps") % shift_distribution_list.size() % original_config.feature_map_count).str());

		std::vector<float> shift_list(original_config.feature_map_count);
		{
			boost::lock_guard<boost::mutex> lock(gen_stream_mutex);

			for(unsigned int feature_map_id = 0; feature_map_id < original_config.feature_map_count; ++feature_map_id)
			{
				nnforge_uniform_real_distribution<float>& dist = shift_distribution_list[feature_map_id];
				float shift = dist.min();
				if (dist.max() > dist.min())
					shift = dist(generator);
				shift_list[feature_map_id] = shift;
			}
		}

		unsigned int neuron_count_per_feature_map = original_config.get_neuron_count_per_feature_map();
		for(unsigned int feature_map_id = 0; feature_map_id < original_config.feature_map_count; ++feature_map_id)
		{
			float shift = shift_list[feature_map_id];
			const float * src_data = data + feature_map_id * neuron_count_per_feature_map;
			float * dest_data = data_transformed + feature_map_id * neuron_count_per_feature_map;
			for(unsigned int i = 0; i < neuron_count_per_feature_map; ++i)
				dest_data[i] = src_data[i] + shift;
		}
	}
开发者ID:anshumang,项目名称:nnForge,代码行数:33,代码来源:uniform_intensity_data_transformer.cpp

示例8: backprop

		void softmax_layer_hessian_plain::backprop(
			additional_buffer_smart_ptr input_errors,
			const_additional_buffer_smart_ptr output_errors,
			const_additional_buffer_smart_ptr output_neurons,
			std::vector<additional_buffer_smart_ptr>& additional_buffers,
			plain_running_configuration_const_smart_ptr plain_config,
			const_layer_smart_ptr layer_schema,
			const_layer_data_smart_ptr data,
			const_layer_data_custom_smart_ptr data_custom,
			const layer_configuration_specific& input_configuration_specific,
			const layer_configuration_specific& output_configuration_specific,
			unsigned int entry_count) const
		{
			const unsigned int input_neuron_count = input_configuration_specific.get_neuron_count();
			const unsigned int input_neuron_count_per_feature_map = input_configuration_specific.get_neuron_count_per_feature_map();
			const unsigned int feature_map_count = static_cast<unsigned int>(input_configuration_specific.feature_map_count);

			const std::vector<float>::iterator input_errors_it = input_errors->begin();
			const std::vector<float>::const_iterator output_errors_it = output_errors->begin();
			const std::vector<float>::const_iterator output_neurons_it = output_neurons->begin();

			const int total_workload = entry_count * input_neuron_count_per_feature_map;
			const int openmp_thread_count = plain_config->openmp_thread_count;
			
			#pragma omp parallel default(none) shared(additional_buffers) num_threads(openmp_thread_count)
			{
				int thread_id = 0;
				#ifdef _OPENMP
				thread_id = omp_get_thread_num();
				#endif

				#pragma omp for schedule(guided)
				for(int workload_id = 0; workload_id < total_workload; ++workload_id)
				{
					int entry_id = workload_id / input_neuron_count_per_feature_map;
					int neuron_id = workload_id - (entry_id * input_neuron_count_per_feature_map);

					const std::vector<float>::iterator in_errors_it = input_errors_it + (entry_id * input_neuron_count) + neuron_id;
					const std::vector<float>::const_iterator out_errors_it = output_errors_it + (entry_id * input_neuron_count) + neuron_id;
					const std::vector<float>::const_iterator out_neurons_it = output_neurons_it + (entry_id * input_neuron_count) + neuron_id;

					float sum = 0.0F;
					for(unsigned int feature_map_id = 0; feature_map_id < feature_map_count; ++feature_map_id)
					{
						unsigned int offset = feature_map_id * input_neuron_count_per_feature_map;
						float val = (*(out_neurons_it + offset));
						sum += val * val * (*(out_errors_it + offset));
					}

					for(unsigned int feature_map_id = 0; feature_map_id < feature_map_count; ++feature_map_id)
					{
						unsigned int offset = feature_map_id * input_neuron_count_per_feature_map;
						float y = *(out_neurons_it + offset);
						float y2 = y * y;
						*(in_errors_it + offset) = y2 * ((*(out_errors_it + offset)) * (2.0F * (y2 - y) + 1.0F) - sum);
					}
				} // for(int workload_id
			} // #pragma parallel
		}
开发者ID:bluelzx,项目名称:nnForge,代码行数:59,代码来源:softmax_layer_hessian_plain.cpp

示例9: get_temporary_working_fixed_buffer_size

		size_t local_contrast_subtractive_layer_updater_plain::get_temporary_working_fixed_buffer_size(
			const layer_action& action,
			const std::set<layer_action>& actions,
			plain_running_configuration::const_ptr plain_config,
			layer::const_ptr layer_schema,
			const std::vector<layer_configuration_specific>& input_configuration_specific_list,
			const layer_configuration_specific& output_configuration_specific) const
		{
			unsigned int elem_count_per_intermediate_elem = output_configuration_specific.get_neuron_count_per_feature_map();
			return elem_count_per_intermediate_elem * plain_config->openmp_thread_count * (output_configuration_specific.dimension_sizes.size() > 1 ? 2 : 1) * sizeof(float);
		}
开发者ID:anshumang,项目名称:nnForge,代码行数:11,代码来源:local_contrast_subtractive_layer_updater_plain.cpp

示例10: configure

		void layer_hessian_cuda::configure(
			const layer_configuration_specific& input_configuration_specific,
			const layer_configuration_specific& output_configuration_specific,
			const_layer_smart_ptr layer_schema,
			cuda_running_configuration_const_smart_ptr cuda_config,
			bool backprop_required)
		{
			this->layer_schema = layer_schema;
			this->input_configuration_specific = input_configuration_specific;
			this->output_configuration_specific = output_configuration_specific;
			this->cuda_config = cuda_config;
			this->backprop_required = backprop_required;

			input_elem_count_per_entry = input_configuration_specific.get_neuron_count();
			output_elem_count_per_entry = output_configuration_specific.get_neuron_count();
			input_elem_count_per_feature_map = input_configuration_specific.get_neuron_count_per_feature_map();
			output_elem_count_per_feature_map = output_configuration_specific.get_neuron_count_per_feature_map();

			hessian_configured();
		}
开发者ID:cyrobot,项目名称:nnForge,代码行数:20,代码来源:layer_hessian_cuda.cpp

示例11: run_forward_propagation

		void maxout_layer_tester_plain::run_forward_propagation(
			plain_buffer::ptr output_buffer,
			const std::vector<plain_buffer::const_ptr>& input_buffers,
			plain_buffer::ptr temporary_working_fixed_buffer,
			plain_buffer::ptr temporary_working_per_entry_buffer,
			plain_running_configuration::const_ptr plain_config,
			layer::const_ptr layer_schema,
			layer_data::const_ptr data,
			layer_data_custom::const_ptr data_custom,
			const std::vector<layer_configuration_specific>& input_configuration_specific_list,
			const layer_configuration_specific& output_configuration_specific,
			unsigned int entry_count) const
		{
			const float * const in_it_global = *input_buffers[0];
			float * const out_it_global = *output_buffer;
			const unsigned int input_neuron_count = input_configuration_specific_list[0].get_neuron_count();
			const unsigned int input_neuron_count_per_feature_map = input_configuration_specific_list[0].get_neuron_count_per_feature_map();
			const unsigned int output_neuron_count = output_configuration_specific.get_neuron_count();
			const unsigned int output_neuron_count_per_feature_map = output_configuration_specific.get_neuron_count_per_feature_map();
			nnforge_shared_ptr<const maxout_layer> layer_derived = nnforge_dynamic_pointer_cast<const maxout_layer>(layer_schema);
			const unsigned int feature_map_subsampling_size = layer_derived->feature_map_subsampling_size;
			const int output_feature_map_count = output_configuration_specific.feature_map_count;
			const int total_workload = entry_count * output_feature_map_count;

			#pragma omp parallel default(none) num_threads(plain_config->openmp_thread_count)
			{
				#pragma omp for schedule(guided)
				for(int workload_id = 0; workload_id < total_workload; ++workload_id)
				{
					int entry_id = workload_id / output_feature_map_count;
					int output_feature_map_id = workload_id - (entry_id * output_feature_map_count);

					const float * in_it_base = in_it_global + (entry_id * input_neuron_count) + (output_feature_map_id * input_neuron_count_per_feature_map);
					float * out_it_base = out_it_global + (entry_id * output_neuron_count) + (output_feature_map_id * output_neuron_count_per_feature_map);

					for(float * out_it = out_it_base; out_it != out_it_base + output_neuron_count_per_feature_map; ++out_it, ++in_it_base)
					{
						const float * in_it = in_it_base;
						float current_max = *in_it;
						for(unsigned int i = 1; i < feature_map_subsampling_size; ++i)
						{
							in_it += output_feature_map_count * output_neuron_count_per_feature_map;
							float new_val = *in_it;
							current_max = std::max(new_val, current_max);
						}
						*out_it = current_max;
					}
				}
			}
		}
开发者ID:anshumang,项目名称:nnForge,代码行数:50,代码来源:maxout_layer_tester_plain.cpp

示例12: run_forward_propagation

		void prefix_sum_layer_tester_plain::run_forward_propagation(
			plain_buffer::ptr output_buffer,
			const std::vector<plain_buffer::const_ptr>& input_buffers,
			plain_buffer::ptr temporary_working_fixed_buffer,
			plain_buffer::ptr temporary_working_per_entry_buffer,
			plain_running_configuration::const_ptr plain_config,
			layer::const_ptr layer_schema,
			layer_data::const_ptr data,
			layer_data_custom::const_ptr data_custom,
			const std::vector<layer_configuration_specific>& input_configuration_specific_list,
			const layer_configuration_specific& output_configuration_specific,
			unsigned int entry_count) const
		{
			const float * const in_it_global = *input_buffers[0];
			float * const out_it_global = *output_buffer;
			const unsigned int neuron_count = output_configuration_specific.get_neuron_count();
			std::shared_ptr<const prefix_sum_layer> layer_derived = std::dynamic_pointer_cast<const prefix_sum_layer>(layer_schema);
			const unsigned int feature_map_segment_length = layer_derived->feature_map_segment_length;
			const unsigned int feature_map_segment_count = output_configuration_specific.feature_map_count / feature_map_segment_length;
			const unsigned int neuron_count_per_feature_map = output_configuration_specific.get_neuron_count_per_feature_map();
			const float clamp_min = layer_derived->clamp_min;
			const float clamp_max = layer_derived->clamp_max;
			const int total_workload = entry_count * feature_map_segment_count * neuron_count_per_feature_map;

			#pragma omp parallel default(none) num_threads(plain_config->openmp_thread_count)
			{
				#pragma omp for schedule(guided)
				for(int workload_id = 0; workload_id < total_workload; ++workload_id)
				{
					int entry_id = workload_id / (feature_map_segment_count * neuron_count_per_feature_map);
					int tt = workload_id - entry_id * feature_map_segment_count * neuron_count_per_feature_map;
					int feature_map_segment_id = tt / neuron_count_per_feature_map;
					int neuron_id = tt - feature_map_segment_id * neuron_count_per_feature_map;

					int offset = entry_id * neuron_count + feature_map_segment_id * feature_map_segment_length * neuron_count_per_feature_map + neuron_id;

					float running_sum = 0.0F;
					for(unsigned int i = 0; i < feature_map_segment_length; ++i, offset += neuron_count_per_feature_map)
					{
						running_sum += in_it_global[offset];
						out_it_global[offset] = std::min(std::max(running_sum, clamp_min), clamp_max);
					}
				}
			}
		}
开发者ID:milakov,项目名称:nnForge,代码行数:45,代码来源:prefix_sum_layer_tester_plain.cpp

示例13: test_non_tiling

		void max_subsampling_layer_tester_plain::test_non_tiling(
			plain_buffer::ptr output_buffer,
			plain_buffer::const_ptr input_buffer,
			plain_running_configuration::const_ptr plain_config,
			layer::const_ptr layer_schema,
			const layer_configuration_specific& input_configuration_specific,
			const layer_configuration_specific& output_configuration_specific,
			unsigned int entry_count) const
		{
			std::vector<unsigned int> input_dimension_sizes = input_configuration_specific.dimension_sizes;
			if (input_dimension_sizes.empty())
				input_dimension_sizes.push_back(1);
			std::vector<unsigned int> output_dimension_sizes = output_configuration_specific.dimension_sizes;
			if (output_dimension_sizes.empty())
				output_dimension_sizes.push_back(1);

			std::shared_ptr<const max_subsampling_layer> layer_derived = std::dynamic_pointer_cast<const max_subsampling_layer>(layer_schema);

			for(std::vector<bool>::const_iterator it = layer_derived->round_ups.begin(); it != layer_derived->round_ups.end(); ++it)
				if (*it)
					throw neural_network_exception("round up is not implemented for max_subsampling_layer_tester_plain");

			const float * const in_it_global = *input_buffer;
			float * const out_it_global = *output_buffer;
			const unsigned int input_neuron_count = input_configuration_specific.get_neuron_count();
			const unsigned int input_neuron_count_per_feature_map = input_configuration_specific.get_neuron_count_per_feature_map();
			const unsigned int output_neuron_count = output_configuration_specific.get_neuron_count();
			const unsigned int output_neuron_count_per_feature_map = output_configuration_specific.get_neuron_count_per_feature_map();
			std::vector<unsigned int> strides = layer_derived->strides;
			if (strides.empty())
				strides.push_back(1);
			std::vector<unsigned int> subsampling_sizes = layer_derived->subsampling_sizes;
			if (subsampling_sizes.empty())
				subsampling_sizes.push_back(1);
			const unsigned int feature_map_subsampling_size = layer_derived->feature_map_subsampling_size;
			subsampling_sizes.push_back(feature_map_subsampling_size);
			const unsigned int entry_subsampling_size = layer_derived->entry_subsampling_size;
			subsampling_sizes.push_back(entry_subsampling_size);
			const unsigned int subsampling_dimension_count = static_cast<unsigned int>(subsampling_sizes.size());
			const unsigned int spatial_dimension_count = static_cast<unsigned int>(output_dimension_sizes.size());
			std::vector<unsigned int> input_slices(subsampling_sizes.size());
			input_slices[0] = 1;
			for(unsigned int i = 0; i < subsampling_dimension_count - 1; ++i)
			{
				int dimension_size = (i < spatial_dimension_count) ? input_dimension_sizes[i] : input_configuration_specific.feature_map_count;
				input_slices[i + 1] = input_slices[i] * dimension_size;
			}
			unsigned int subsampling_elem_count = 1;
			for(unsigned int i = 0; i < subsampling_dimension_count; ++i)
				subsampling_elem_count *= subsampling_sizes[i];
			const unsigned int const_subsampling_elem_count = subsampling_elem_count;
			const float mult = 1.0F / static_cast<float>(subsampling_elem_count);
			const unsigned int output_feature_map_count = output_configuration_specific.feature_map_count;
			const bool is_min = layer_derived->is_min;

			std::vector<unsigned int> current_local_input_position(subsampling_dimension_count, 0);
			std::vector<unsigned int> offset_list(subsampling_elem_count);
			for(unsigned int i = 1; i < subsampling_elem_count; ++i)
			{
				int offset = 0;
				for(unsigned int j = 0; j < subsampling_dimension_count; ++j)
				{
					offset += static_cast<int>(input_slices[j]);
					if ((++current_local_input_position[j]) < subsampling_sizes[j])
					{
						offset_list[i] = offset_list[i-1] + offset;
						break;
					}
					current_local_input_position[j] = 0;
					offset -= static_cast<int>(subsampling_sizes[j] * input_slices[j]);
				}
			}

			const int total_workload = entry_count * output_configuration_specific.feature_map_count;
			const std::vector<unsigned int>::const_iterator dimension_sizes_it = output_dimension_sizes.begin();
			const std::vector<unsigned int>::const_iterator strides_it = strides.begin();
			const std::vector<unsigned int>::const_iterator input_slices_it = input_slices.begin();
			const std::vector<unsigned int>::const_iterator offset_list_it = offset_list.begin();

			#pragma omp parallel default(none) num_threads(plain_config->openmp_thread_count)
			{
				std::array<unsigned int, max_dimension_count> current_output_position;

				#pragma omp for schedule(guided)
				for(int workload_id = 0; workload_id < total_workload; ++workload_id)
				{
					int output_entry_id = workload_id / output_feature_map_count;
					int output_feature_map_id = workload_id - (output_entry_id * output_feature_map_count);

					const float * in_it_base = in_it_global + (output_entry_id * entry_subsampling_size * input_neuron_count) + (output_feature_map_id * feature_map_subsampling_size * input_neuron_count_per_feature_map);
					float * out_it_base = out_it_global + (output_entry_id * output_neuron_count) + (output_feature_map_id * output_neuron_count_per_feature_map);

					std::fill_n(current_output_position.begin(), spatial_dimension_count, 0);
					for(float * out_it = out_it_base; out_it != out_it_base + output_neuron_count_per_feature_map; ++out_it)
					{
						// Define the starting position of the first input elem
						const float * in_it = in_it_base;
						for(unsigned int i = 0; i < spatial_dimension_count; ++i)
							in_it += current_output_position[i] * (*(strides_it + i)) * (*(input_slices_it + i));

//.........这里部分代码省略.........
开发者ID:milakov,项目名称:nnForge,代码行数:101,代码来源:max_subsampling_layer_tester_plain.cpp

示例14: test

		void local_contrast_subtractive_layer_updater_plain::test(
			const_additional_buffer_smart_ptr input_buffer,
			additional_buffer_smart_ptr output_buffer,
			std::vector<additional_buffer_smart_ptr>& additional_buffers,
			plain_running_configuration_const_smart_ptr plain_config,
			const_layer_smart_ptr layer_schema,
			const_layer_data_smart_ptr data,
			const_layer_data_custom_smart_ptr data_custom,
			const layer_configuration_specific& input_configuration_specific,
			const layer_configuration_specific& output_configuration_specific,
			unsigned int updater_count,
			unsigned int offset_input_entry_id) const
		{
			if (offset_input_entry_id > 0)
				throw neural_network_exception("local_contrast_subtractive_layer_updater_plain is not able to run using offset");

			const unsigned int input_neuron_count = input_configuration_specific.get_neuron_count();
			const unsigned int input_neuron_count_per_feature_map = input_configuration_specific.get_neuron_count_per_feature_map();
			const unsigned int output_neuron_count = output_configuration_specific.get_neuron_count();
			const unsigned int output_neuron_count_per_feature_map = output_configuration_specific.get_neuron_count_per_feature_map();
			nnforge_shared_ptr<const local_contrast_subtractive_layer> layer_derived = nnforge_dynamic_pointer_cast<const local_contrast_subtractive_layer>(layer_schema);
			const std::vector<std::vector<float> >& window_weights_list = layer_derived->window_weights_list;
			const std::vector<unsigned int>& feature_maps_affected = layer_derived->feature_maps_affected;
			const std::vector<unsigned int>& feature_maps_unaffected = layer_derived->feature_maps_unaffected;
			const unsigned int dimension_count = static_cast<unsigned int>(window_weights_list.size());
			std::vector<unsigned int> input_slices(input_configuration_specific.dimension_sizes.size());
			input_slices[0] = 1;
			for(unsigned int i = 0; i < dimension_count - 1; ++i)
				input_slices[i + 1] = input_slices[i] * input_configuration_specific.dimension_sizes[i];

			const std::vector<unsigned int>::const_iterator dimension_sizes_it = output_configuration_specific.dimension_sizes.begin();
			const unsigned int feature_maps_affected_count = static_cast<unsigned int>(feature_maps_affected.size());
			const unsigned int feature_maps_unaffected_count = static_cast<unsigned int>(feature_maps_affected.size());
			const std::vector<unsigned int>::const_iterator input_slices_it = input_slices.begin();
			const std::vector<unsigned int>::const_iterator feature_maps_affected_it = feature_maps_affected.begin();
			const std::vector<float>::const_iterator input_buffer_it = input_buffer->begin();
			const std::vector<float>::iterator output_buffer_it = output_buffer->begin();
			const std::vector<std::vector<float> >::const_iterator window_weights_list_it = window_weights_list.begin();

			const int total_workload = updater_count * feature_maps_affected_count;
			const int openmp_thread_count = plain_config->openmp_thread_count;
			
			#pragma omp parallel default(none) shared(additional_buffers) num_threads(openmp_thread_count)
			{
				std::vector<additional_buffer_smart_ptr> local_additional_buffers;
				int thread_id = 0;
				#ifdef _OPENMP
				thread_id = omp_get_thread_num();
				#endif

				local_additional_buffers.push_back(additional_buffers[thread_id]);
				if (dimension_count > 1)
					local_additional_buffers.push_back(additional_buffers[openmp_thread_count + thread_id]);

				#pragma omp for schedule(guided)
				for(int workload_id = 0; workload_id < total_workload; ++workload_id)
				{
					int entry_id = workload_id / feature_maps_affected_count;
					int affected_feature_map_id = workload_id - (entry_id * feature_maps_affected_count);

					unsigned int current_output_buffer_index = 0;
					unsigned int feature_map_id = *(feature_maps_affected_it + affected_feature_map_id);
					for(unsigned int dimension_id = 0; dimension_id < dimension_count; ++dimension_id)
					{
						std::vector<float>::iterator out_it_base = local_additional_buffers[current_output_buffer_index]->begin();
						std::vector<float>::const_iterator in_it;
						if (dimension_id > 0)
							in_it = local_additional_buffers[1 - current_output_buffer_index]->begin();
						else
							in_it = input_buffer_it + (entry_id * input_neuron_count) + (feature_map_id * input_neuron_count_per_feature_map);
						int max_output_size = *(dimension_sizes_it + dimension_id);
						int input_slice_size = *(input_slices_it + dimension_id);

						std::vector<unsigned int> current_output_position(dimension_count, 0);
						for(std::vector<float>::iterator out_it = out_it_base; out_it != out_it_base + output_neuron_count_per_feature_map; ++out_it, ++in_it)
						{
							const std::vector<float>& current_window_weights_list = *(window_weights_list_it + dimension_id);
							float sum = *in_it * current_window_weights_list[0];

							int current_position = static_cast<int>(current_output_position[dimension_id]);
							int dest_forward = current_position;
							int dest_backward = dest_forward;
							for (std::vector<float>::const_iterator it = current_window_weights_list.begin() + 1; it != current_window_weights_list.end(); ++it)
							{
								dest_forward++;
								dest_backward--;
								int dest_forward_actual = (dest_forward < max_output_size) ? dest_forward : (((max_output_size << 1) - 1) - dest_forward);
								int dest_backward_actual = (dest_backward >= 0) ? dest_backward : (-1 - dest_backward);
								int offset_forward = ((dest_forward_actual - current_position) * input_slice_size);
								int offset_backward = ((dest_backward_actual - current_position) * input_slice_size);
								sum += (*(in_it + offset_forward) + *(in_it + offset_backward)) * (*it);
							}

							*out_it = sum;

							// Go to the next output element
							for(unsigned int i = 0; i < dimension_count; ++i)
							{
								if ((++current_output_position[i]) < *(dimension_sizes_it + i))
									break;
//.........这里部分代码省略.........
开发者ID:Alienfeel,项目名称:nnForge,代码行数:101,代码来源:local_contrast_subtractive_layer_updater_plain.cpp

示例15: test

		void sparse_convolution_layer_updater_plain::test(
			const_additional_buffer_smart_ptr input_buffer,
			additional_buffer_smart_ptr output_buffer,
			std::vector<additional_buffer_smart_ptr>& additional_buffers,
			plain_running_configuration_const_smart_ptr plain_config,
			const_layer_smart_ptr layer_schema,
			const_layer_data_smart_ptr data,
			const_layer_data_custom_smart_ptr data_custom,
			const layer_configuration_specific& input_configuration_specific,
			const layer_configuration_specific& output_configuration_specific,
			unsigned int updater_count,
			unsigned int offset_input_entry_id) const
		{
			const unsigned int input_neuron_count = input_configuration_specific.get_neuron_count();
			const unsigned int input_neuron_count_per_feature_map = input_configuration_specific.get_neuron_count_per_feature_map();
			const unsigned int output_neuron_count = output_configuration_specific.get_neuron_count();
			const unsigned int output_neuron_count_per_feature_map = output_configuration_specific.get_neuron_count_per_feature_map();
			const std::vector<float>::const_iterator in_it_global = input_buffer->begin() + input_neuron_count * offset_input_entry_id;
			const std::vector<float>::iterator out_it_global = output_buffer->begin();
			nnforge_shared_ptr<const sparse_convolution_layer> layer_derived = nnforge_dynamic_pointer_cast<const sparse_convolution_layer>(layer_schema);
			const std::vector<unsigned int>& window_sizes = layer_derived->window_sizes;
			const unsigned int dimension_count = static_cast<unsigned int>(window_sizes.size());
			std::vector<unsigned int> input_slices(input_configuration_specific.dimension_sizes.size());
			input_slices[0] = 1;
			for(unsigned int i = 0; i < dimension_count - 1; ++i)
				input_slices[i + 1] = input_slices[i] * input_configuration_specific.dimension_sizes[i];
			unsigned int window_elem_count = 1;
			for(unsigned int i = 0; i < dimension_count; ++i)
				window_elem_count *= window_sizes[i];
			const unsigned int const_window_elem_count = window_elem_count;

			const std::vector<float>::const_iterator weights = (*data)[0].begin();
			const std::vector<float>::const_iterator biases = (*data)[1].begin();

			const std::vector<int>::const_iterator column_indices = (*data_custom)[0].begin();
			const std::vector<int>::const_iterator row_indices = (*data_custom)[1].begin();

			std::vector<unsigned int> current_local_input_position(dimension_count, 0);
			std::vector<unsigned int> offset_list(window_elem_count);
			for(unsigned int i = 1; i < window_elem_count; ++i)
			{
				int offset = 0;
				for(unsigned int j = 0; j < dimension_count; ++j)
				{
					offset += static_cast<int>(input_slices[j]);
					if ((++current_local_input_position[j]) < window_sizes[j])
					{
						offset_list[i] = offset_list[i-1] + offset;
						break;
					}
					current_local_input_position[j] = 0;
					offset -= static_cast<int>(window_sizes[j] * input_slices[j]);
				}
			}

			const unsigned int output_feature_map_count = output_configuration_specific.feature_map_count;
			const unsigned int input_feature_map_count = input_configuration_specific.feature_map_count;
			const int total_workload = updater_count * output_feature_map_count;
			const std::vector<unsigned int>::const_iterator output_dimension_sizes_it = output_configuration_specific.dimension_sizes.begin();
			const std::vector<unsigned int>::const_iterator input_slices_it = input_slices.begin();
			const std::vector<unsigned int>::const_iterator offset_list_it = offset_list.begin();

			#pragma omp parallel default(none) num_threads(plain_config->openmp_thread_count)
			{
				nnforge_array<unsigned int, max_dimension_count> current_output_position;

				#pragma omp for schedule(guided)
				for(int workload_id = 0; workload_id < total_workload; ++workload_id)
				{
					int entry_id = workload_id / output_feature_map_count;
					int output_feature_map_id = workload_id - (entry_id * output_feature_map_count);

					std::vector<float>::iterator out_it_base = out_it_global + (entry_id * output_neuron_count) + (output_feature_map_id * output_neuron_count_per_feature_map);
					std::vector<float>::const_iterator in_it_base = in_it_global + entry_id * input_neuron_count;

					const int start_column_index = row_indices[output_feature_map_id];
					const int end_column_index = row_indices[output_feature_map_id + 1];

					std::fill_n(current_output_position.begin(), dimension_count, 0);
					for(std::vector<float>::iterator out_it = out_it_base; out_it != out_it_base + output_neuron_count_per_feature_map; ++out_it)
					{
						float sum = *(biases + output_feature_map_id);
						std::vector<float>::const_iterator weights_it = weights + start_column_index * const_window_elem_count;
						std::vector<float>::const_iterator in_it_base2 = in_it_base;
						for(unsigned int i = 0; i < dimension_count; ++i)
							in_it_base2 += current_output_position[i] * (*(input_slices_it + i));

						for(int column_index = start_column_index; column_index < end_column_index; ++column_index)
						{
							int input_feature_map_id = column_indices[column_index];

							// Define the starting position of the first input elem
							std::vector<float>::const_iterator in_it = in_it_base2 + (input_feature_map_id * input_neuron_count_per_feature_map);

							for(unsigned int i = 0; i < const_window_elem_count; ++i)
							{
								sum += (*(in_it + *(offset_list_it + i))) * (*weights_it);
								++weights_it;
							}
						}
//.........这里部分代码省略.........
开发者ID:bluelzx,项目名称:nnForge,代码行数:101,代码来源:sparse_convolution_layer_updater_plain.cpp


注:本文中的layer_configuration_specific::get_neuron_count_per_feature_map方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。