本文整理汇总了C++中layer_configuration_specific::get_neuron_count方法的典型用法代码示例。如果您正苦于以下问题:C++ layer_configuration_specific::get_neuron_count方法的具体用法?C++ layer_configuration_specific::get_neuron_count怎么用?C++ layer_configuration_specific::get_neuron_count使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类layer_configuration_specific
的用法示例。
在下文中一共展示了layer_configuration_specific::get_neuron_count方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: run_forward_propagation
void rgb_to_yuv_convert_layer_tester_plain::run_forward_propagation(
plain_buffer::ptr output_buffer,
const std::vector<plain_buffer::const_ptr>& input_buffers,
plain_buffer::ptr temporary_working_fixed_buffer,
plain_buffer::ptr temporary_working_per_entry_buffer,
plain_running_configuration::const_ptr plain_config,
layer::const_ptr layer_schema,
layer_data::const_ptr data,
layer_data_custom::const_ptr data_custom,
const std::vector<layer_configuration_specific>& input_configuration_specific_list,
const layer_configuration_specific& output_configuration_specific,
unsigned int entry_count) const
{
const float * const in_it = *input_buffers[0];
float * const out_it = *output_buffer;
nnforge_shared_ptr<const rgb_to_yuv_convert_layer> layer_derived = nnforge_dynamic_pointer_cast<const rgb_to_yuv_convert_layer>(layer_schema);
const unsigned int color_feature_map_config_count = static_cast<unsigned int>(layer_derived->color_feature_map_config_list.size());
if ((out_it != in_it) && ((color_feature_map_config_count * 3) != output_configuration_specific.feature_map_count))
memcpy(out_it, in_it, output_configuration_specific.get_neuron_count() * entry_count * sizeof(float));
const int total_workload = static_cast<int>(entry_count * color_feature_map_config_count);
const unsigned int input_neuron_count = output_configuration_specific.get_neuron_count();
const unsigned int input_neuron_count_per_feature_map = output_configuration_specific.get_neuron_count_per_feature_map();
const std::vector<color_feature_map_config>::const_iterator cfm_it = layer_derived->color_feature_map_config_list.begin();
#pragma omp parallel for default(none) schedule(guided) num_threads(plain_config->openmp_thread_count)
for(int workload_id = 0; workload_id < total_workload; ++workload_id)
{
int entry_id = workload_id / color_feature_map_config_count;
int color_feature_map_config_id = workload_id - entry_id * color_feature_map_config_count;
const color_feature_map_config& cfm = *(cfm_it + color_feature_map_config_id);
const float * in_it_red_and_y = in_it + (entry_id * input_neuron_count) + (cfm.red_and_y_feature_map_id * input_neuron_count_per_feature_map);
const float * in_it_green_and_u = in_it + (entry_id * input_neuron_count) + (cfm.green_and_u_feature_map_id * input_neuron_count_per_feature_map);
const float * in_it_blue_and_v = in_it + (entry_id * input_neuron_count) + (cfm.blue_and_v_feature_map_id * input_neuron_count_per_feature_map);
float * out_it_red_and_y = out_it + (entry_id * input_neuron_count) + (cfm.red_and_y_feature_map_id * input_neuron_count_per_feature_map);
float * out_it_green_and_u = out_it + (entry_id * input_neuron_count) + (cfm.green_and_u_feature_map_id * input_neuron_count_per_feature_map);
float * out_it_blue_and_v = out_it + (entry_id * input_neuron_count) + (cfm.blue_and_v_feature_map_id * input_neuron_count_per_feature_map);
for(unsigned int i = 0; i < input_neuron_count_per_feature_map; ++i)
{
float red = in_it_red_and_y[i];
float green = in_it_green_and_u[i];
float blue = in_it_blue_and_v[i];
float y = w_r * red + w_g * green + w_b * blue;
float u = u_mult * (blue - y);
float v = v_mult * (red - y);
out_it_red_and_y[i] = y;
out_it_green_and_u[i] = u;
out_it_blue_and_v[i] = v;
}
}
}
示例2: transform
void reshape_data_transformer::transform(
const float * data,
float * data_transformed,
const layer_configuration_specific& original_config,
unsigned int sample_id)
{
if (original_config.get_neuron_count() != config.get_neuron_count())
throw neural_network_exception((boost::format("Neuron counts for reshape_data_transformer don't match: %1% and %2%") % original_config.get_neuron_count() % config.get_neuron_count()).str());
memcpy(data_transformed, data, original_config.get_neuron_count() * sizeof(float));
}
示例3: test
void dropout_layer_updater_plain::test(
const_additional_buffer_smart_ptr input_buffer,
additional_buffer_smart_ptr output_buffer,
std::vector<additional_buffer_smart_ptr>& additional_buffers,
plain_running_configuration_const_smart_ptr plain_config,
const_layer_smart_ptr layer_schema,
const_layer_data_smart_ptr data,
const_layer_data_custom_smart_ptr data_custom,
const layer_configuration_specific& input_configuration_specific,
const layer_configuration_specific& output_configuration_specific,
unsigned int updater_count,
unsigned int offset_input_entry_id,
bool force_deterministic) const
{
if (offset_input_entry_id > 0)
throw neural_network_exception("dropout_layer_updater_plain is not able to run using offset");
if (force_deterministic)
{
memcpy(&(output_buffer->at(0)), &(input_buffer->at(0)), input_configuration_specific.get_neuron_count() * updater_count * sizeof(float));
}
else
{
const std::vector<float>::const_iterator in_it_global = input_buffer->begin();
const std::vector<float>::iterator out_it_global = output_buffer->begin();
unsigned char * keep_elem_ptr = reinterpret_cast<unsigned char *>(&(additional_buffers[0]->at(0)));
nnforge_shared_ptr<const dropout_layer> layer_derived = nnforge_dynamic_pointer_cast<const dropout_layer>(layer_schema);
const float dropout_rate = layer_derived->dropout_rate;
const float keep_rate = 1.0F - dropout_rate;
const float mult = 1.0F / keep_rate;
const int total_workload = input_configuration_specific.get_neuron_count() * updater_count;
nnforge_uniform_real_distribution<float> dist(0.0F, 1.0F);
for(int i = 0; i < total_workload; ++i)
keep_elem_ptr[i] = (dist(gen) <= keep_rate ? (unsigned char)1 : (unsigned char)0);
#pragma omp parallel default(none) num_threads(plain_config->openmp_thread_count) shared(keep_elem_ptr)
{
#pragma omp for schedule(guided)
for(int workload_id = 0; workload_id < total_workload; ++workload_id)
{
int elem_id = workload_id;
*(out_it_global + elem_id) = *(in_it_global + elem_id) * (keep_elem_ptr[elem_id] ? mult : 0.0F);
}
}
}
}
示例4: create_tester_specific
layer_tester_cuda_smart_ptr convolution_layer_testing_schema::create_tester_specific(
const layer_configuration_specific& input_configuration_specific,
const layer_configuration_specific& output_configuration_specific) const
{
layer_tester_cuda_smart_ptr res;
if (output_configuration_specific.get_neuron_count() == output_configuration_specific.feature_map_count)
{
res = layer_tester_cuda_smart_ptr(new fully_connected_layer_tester_cuda());
}
else
{
switch (output_configuration_specific.dimension_sizes.size())
{
case 1:
if (cuda_config->get_compute_capability() >= 300)
res = layer_tester_cuda_smart_ptr(new convolution_1d_layer_tester_cuda_kepler());
else
res = layer_tester_cuda_smart_ptr(new convolution_1d_layer_tester_cuda_fermi());
break;
case 2:
if (cuda_config->get_compute_capability() >= 300)
res = layer_tester_cuda_smart_ptr(new convolution_2d_layer_tester_cuda_kepler());
else
res = layer_tester_cuda_smart_ptr(new convolution_2d_layer_tester_cuda_fermi());
break;
default:
throw neural_network_exception((boost::format("No CUDA tester for the convolution layer of %1% dimensions") % output_configuration_specific.dimension_sizes.size()).str());
break;
}
}
return res;
}
示例5: test
void softmax_layer_hessian_plain::test(
const_additional_buffer_smart_ptr input_buffer,
additional_buffer_smart_ptr output_buffer,
std::vector<additional_buffer_smart_ptr>& additional_buffers,
plain_running_configuration_const_smart_ptr plain_config,
const_layer_smart_ptr layer_schema,
const_layer_data_smart_ptr data,
const_layer_data_custom_smart_ptr data_custom,
const layer_configuration_specific& input_configuration_specific,
const layer_configuration_specific& output_configuration_specific,
unsigned int entry_count) const
{
const unsigned int input_neuron_count = input_configuration_specific.get_neuron_count();
const unsigned int input_neuron_count_per_feature_map = input_configuration_specific.get_neuron_count_per_feature_map();
const unsigned int feature_map_count = static_cast<unsigned int>(input_configuration_specific.feature_map_count);
const std::vector<float>::const_iterator input_buffer_it = input_buffer->begin();
const std::vector<float>::iterator output_buffer_it = output_buffer->begin();
const int total_workload = entry_count * input_neuron_count_per_feature_map;
const int openmp_thread_count = plain_config->openmp_thread_count;
#pragma omp parallel default(none) shared(additional_buffers) num_threads(openmp_thread_count)
{
int thread_id = 0;
#ifdef _OPENMP
thread_id = omp_get_thread_num();
#endif
std::vector<float>& local_additional_buffer = *(additional_buffers[thread_id]);
#pragma omp for schedule(guided)
for(int workload_id = 0; workload_id < total_workload; ++workload_id)
{
int entry_id = workload_id / input_neuron_count_per_feature_map;
int neuron_id = workload_id - (entry_id * input_neuron_count_per_feature_map);
const std::vector<float>::const_iterator in_it = input_buffer_it + (entry_id * input_neuron_count) + neuron_id;
const std::vector<float>::iterator out_it = output_buffer_it + (entry_id * input_neuron_count) + neuron_id;
float max_val = -1.0e+37F;
for(unsigned int feature_map_id = 0; feature_map_id < feature_map_count; ++feature_map_id)
{
float val = *(in_it + (feature_map_id * input_neuron_count_per_feature_map));
max_val = std::max(max_val, val);
}
float sum = 0.0F;
for(unsigned int feature_map_id = 0; feature_map_id < feature_map_count; ++feature_map_id)
{
float val = expf((*(in_it + (feature_map_id * input_neuron_count_per_feature_map))) - max_val);
sum += val;
local_additional_buffer[feature_map_id] = val;
}
float mult = 1.0F / sum;
for(unsigned int feature_map_id = 0; feature_map_id < feature_map_count; ++feature_map_id)
*(out_it + (feature_map_id * input_neuron_count_per_feature_map)) = local_additional_buffer[feature_map_id] * mult;
} // for(int workload_id
} // #pragma parallel
}
示例6: run_forward_propagation
void rectified_linear_layer_updater_plain::run_forward_propagation(
plain_buffer::ptr output_buffer,
const std::vector<plain_buffer::const_ptr>& input_buffers,
plain_buffer::ptr temporary_working_fixed_buffer,
plain_buffer::ptr temporary_working_per_entry_buffer,
plain_buffer::ptr temporary_per_entry_buffer,
plain_running_configuration::const_ptr plain_config,
layer::const_ptr layer_schema,
layer_data::const_ptr data,
layer_data_custom::const_ptr data_custom,
const std::vector<layer_configuration_specific>& input_configuration_specific_list,
const layer_configuration_specific& output_configuration_specific,
const std::set<layer_action>& actions,
unsigned int entry_count) const
{
std::shared_ptr<const rectified_linear_layer> layer_derived = std::dynamic_pointer_cast<const rectified_linear_layer>(layer_schema);
const int elem_count = static_cast<int>(entry_count * output_configuration_specific.get_neuron_count());
float * const out_it = *output_buffer;
const float * const in_it = *input_buffers[0];
const float negative_slope = layer_derived->negative_slope;
#pragma omp parallel for default(none) schedule(guided) num_threads(plain_config->openmp_thread_count)
for(int i = 0; i < elem_count; ++i)
{
float input_val = *(in_it + i);
*(out_it + i) = input_val >= 0.0F ? input_val : input_val * negative_slope;
}
}
示例7: backprop
void absolute_layer_updater_plain::backprop(
additional_buffer_smart_ptr input_errors,
const_additional_buffer_smart_ptr input_neurons,
const_additional_buffer_smart_ptr output_errors,
const_additional_buffer_smart_ptr output_neurons,
std::vector<additional_buffer_smart_ptr>& additional_buffers,
plain_running_configuration_const_smart_ptr plain_config,
const_layer_smart_ptr layer_schema,
const_layer_data_smart_ptr data,
const layer_configuration_specific& input_configuration_specific,
const layer_configuration_specific& output_configuration_specific,
unsigned int updater_count) const
{
const int elem_count = static_cast<int>(updater_count * input_configuration_specific.get_neuron_count());
const std::vector<float>::const_iterator in_it = input_neurons->begin();
const std::vector<float>::iterator in_err_it = input_errors->begin();
#pragma omp parallel for default(none) schedule(guided) num_threads(plain_config->openmp_thread_count)
for(int i = 0; i < elem_count; ++i)
{
float val = *(in_it + i);
if (val < 0.0F)
{
*(in_err_it + i) = - *(in_err_it + i);
}
}
}
示例8: test
void absolute_layer_updater_plain::test(
const_additional_buffer_smart_ptr input_buffer,
additional_buffer_smart_ptr output_buffer,
std::vector<additional_buffer_smart_ptr>& additional_buffers,
plain_running_configuration_const_smart_ptr plain_config,
const_layer_smart_ptr layer_schema,
const_layer_data_smart_ptr data,
const_layer_data_custom_smart_ptr data_custom,
const layer_configuration_specific& input_configuration_specific,
const layer_configuration_specific& output_configuration_specific,
unsigned int updater_count,
unsigned int offset_input_entry_id,
bool force_deterministic) const
{
if (offset_input_entry_id > 0)
throw neural_network_exception("absolute_layer_updater_plain is not able to run using offset");
const int elem_count = static_cast<int>(updater_count * input_configuration_specific.get_neuron_count());
const std::vector<float>::const_iterator in_it = input_buffer->begin();
const std::vector<float>::iterator out_it = output_buffer->begin();
#pragma omp parallel for default(none) schedule(guided) num_threads(plain_config->openmp_thread_count)
for(int i = 0; i < elem_count; ++i)
*(out_it + i) = fabs(*(in_it + i));
}
示例9:
supervised_data_mem_reader::supervised_data_mem_reader(
const layer_configuration_specific& input_configuration,
const layer_configuration_specific& output_configuration,
const std::vector<std::tr1::shared_ptr<const std::vector<float> > >& input_data_list,
const std::vector<std::tr1::shared_ptr<const std::vector<float> > >& output_data_list)
: input_configuration(input_configuration)
, output_configuration(output_configuration)
, input_data_list_float(input_data_list)
, output_data_list(output_data_list)
, entry_read_count(0)
, type_code(neuron_data_type::type_byte)
, entry_count(static_cast<unsigned int>(input_data_list.size()))
, input_neuron_count(input_configuration.get_neuron_count())
, output_neuron_count(output_configuration.get_neuron_count())
{
}
示例10: run_forward_propagation
void concat_layer_updater_plain::run_forward_propagation(
plain_buffer::ptr output_buffer,
const std::vector<plain_buffer::const_ptr>& input_buffers,
plain_buffer::ptr temporary_working_fixed_buffer,
plain_buffer::ptr temporary_working_per_entry_buffer,
plain_buffer::ptr temporary_per_entry_buffer,
plain_running_configuration::const_ptr plain_config,
layer::const_ptr layer_schema,
layer_data::const_ptr data,
layer_data_custom::const_ptr data_custom,
const std::vector<layer_configuration_specific>& input_configuration_specific_list,
const layer_configuration_specific& output_configuration_specific,
const std::set<layer_action>& actions,
unsigned int entry_count) const
{
for(unsigned int entry_id = 0; entry_id < entry_count; ++entry_id)
{
float *dst = (float *)*output_buffer + entry_id * output_configuration_specific.get_neuron_count();
for(unsigned int i = 0; i < static_cast<unsigned int>(input_configuration_specific_list.size()); ++i)
{
unsigned int input_neuron_count = input_configuration_specific_list[i].get_neuron_count();
memcpy(
dst,
(const float *)(*input_buffers[i]) + entry_id * input_neuron_count,
input_neuron_count * sizeof(float));
dst += input_neuron_count;
}
}
}
示例11: create_updater_specific
layer_updater_cuda::ptr sparse_convolution_layer_updater_schema::create_updater_specific(
const std::vector<layer_configuration_specific>& input_configuration_specific_list,
const layer_configuration_specific& output_configuration_specific) const
{
layer_updater_cuda::ptr res;
nnforge_shared_ptr<const sparse_convolution_layer> layer_derived = nnforge_dynamic_pointer_cast<const sparse_convolution_layer>(layer_schema);
bool zero_padding = (layer_derived->left_zero_padding == std::vector<unsigned int>(layer_derived->left_zero_padding.size(), 0))
&& (layer_derived->right_zero_padding == std::vector<unsigned int>(layer_derived->right_zero_padding.size(), 0));
if (zero_padding && (output_configuration_specific.get_neuron_count() == output_configuration_specific.feature_map_count))
{
if (input_configuration_specific_list[0].dimension_sizes == output_configuration_specific.dimension_sizes)
{
res = layer_updater_cuda::ptr(new sparse_fully_connected_1x1_layer_updater_cuda());
}
else
{
res = layer_updater_cuda::ptr(new sparse_fully_connected_layer_updater_cuda());
}
}
else
{
res = sparse_convolution_layer_updater_schema_helper_cuda_kepler::create_updater_specific(input_configuration_specific_list, output_configuration_specific);
}
return res;
}
示例12: run_forward_propagation
void add_layer_tester_plain::run_forward_propagation(
plain_buffer::ptr output_buffer,
const std::vector<plain_buffer::const_ptr>& input_buffers,
plain_buffer::ptr temporary_working_fixed_buffer,
plain_buffer::ptr temporary_working_per_entry_buffer,
plain_running_configuration::const_ptr plain_config,
layer::const_ptr layer_schema,
layer_data::const_ptr data,
layer_data_custom::const_ptr data_custom,
const std::vector<layer_configuration_specific>& input_configuration_specific_list,
const layer_configuration_specific& output_configuration_specific,
unsigned int entry_count) const
{
float * const out = *output_buffer;
std::vector<const float *> in_list;
for(std::vector<plain_buffer::const_ptr>::const_iterator it = input_buffers.begin(); it != input_buffers.end(); ++it)
in_list.push_back(**it);
const float ** const in_ptr_list = &in_list[0];
std::shared_ptr<const add_layer> layer_derived = std::dynamic_pointer_cast<const add_layer>(layer_schema);
const float alpha = layer_derived->alpha;
const int src_ptr_count = static_cast<int>(in_list.size());
const int elem_count = static_cast<int>(entry_count * output_configuration_specific.get_neuron_count());
#pragma omp parallel for default(none) schedule(guided) num_threads(plain_config->openmp_thread_count)
for(int i = 0; i < elem_count; ++i)
{
float sum = 0.0F;
for(int j = 0; j < src_ptr_count; ++j)
sum += in_ptr_list[j][i];
out[i] = sum * alpha;
}
}
示例13: get_transformed_configuration
layer_configuration_specific reshape_data_transformer::get_transformed_configuration(const layer_configuration_specific& original_config) const
{
if (original_config.get_neuron_count() != config.get_neuron_count())
throw neural_network_exception((boost::format("Neuron counts for reshape_data_transformer don't match: %1% and %2%") % original_config.get_neuron_count() % config.get_neuron_count()).str());
return config;
}
示例14: test
void hyperbolic_tangent_layer_updater_plain::test(
const_additional_buffer_smart_ptr input_buffer,
additional_buffer_smart_ptr output_buffer,
std::vector<additional_buffer_smart_ptr>& additional_buffers,
plain_running_configuration_const_smart_ptr plain_config,
const_layer_smart_ptr layer_schema,
const_layer_data_smart_ptr data,
const_layer_data_custom_smart_ptr data_custom,
const layer_configuration_specific& input_configuration_specific,
const layer_configuration_specific& output_configuration_specific,
unsigned int updater_count,
unsigned int offset_input_entry_id) const
{
if (offset_input_entry_id > 0)
throw neural_network_exception("hyperbolic_tangent_layer_updater_plain is not able to run using offset");
const int elem_count = static_cast<int>(updater_count * input_configuration_specific.get_neuron_count());
const std::vector<float>::const_iterator in_it = input_buffer->begin();
const std::vector<float>::iterator out_it = output_buffer->begin();
nnforge_shared_ptr<const hyperbolic_tangent_layer> layer_derived = nnforge_dynamic_pointer_cast<const hyperbolic_tangent_layer>(layer_schema);
const float hyperbolic_tangent_steepness2 = layer_derived->steepness * 2.0F;
const float hyperbolic_tangent_major_multiplier = layer_derived->major_multiplier;
#pragma omp parallel for default(none) schedule(guided) num_threads(plain_config->openmp_thread_count)
for(int i = 0; i < elem_count; ++i)
{
float inp = *(in_it + i);
float inp2 = expf(inp * hyperbolic_tangent_steepness2);
float res = (inp2 - 1.0F) / (inp2 + 1.0F) * hyperbolic_tangent_major_multiplier;
*(out_it + i) = res;
}
}
示例15: configure
void layer_updater_cuda::configure(
const std::vector<layer_configuration_specific>& input_configuration_specific_list,
const layer_configuration_specific& output_configuration_specific,
layer::const_ptr layer_schema,
cuda_running_configuration::const_ptr cuda_config,
const std::set<layer_action>& actions)
{
this->layer_schema = layer_schema;
this->input_configuration_specific_list = input_configuration_specific_list;
this->output_configuration_specific = output_configuration_specific;
this->cuda_config = cuda_config;
this->actions = actions;
input_elem_count_per_entry_list.resize(input_configuration_specific_list.size());
input_elem_count_per_feature_map_list.resize(input_configuration_specific_list.size());
for(int i = 0; i < input_configuration_specific_list.size(); ++i)
{
input_elem_count_per_entry_list[i] = input_configuration_specific_list[i].get_neuron_count();
input_elem_count_per_feature_map_list[i] = input_configuration_specific_list[i].get_neuron_count_per_feature_map();
}
output_elem_count_per_entry = output_configuration_specific.get_neuron_count();
output_elem_count_per_feature_map = output_configuration_specific.get_neuron_count_per_feature_map();
updater_configured();
}