当前位置: 首页>>代码示例>>C++>>正文


C++ intVector::front方法代码示例

本文整理汇总了C++中intVector::front方法的典型用法代码示例。如果您正苦于以下问题:C++ intVector::front方法的具体用法?C++ intVector::front怎么用?C++ intVector::front使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在intVector的用法示例。


在下文中一共展示了intVector::front方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: CreateTabularPotential

void CMNet::CreateTabularPotential( const intVector& domain,
        const floatVector& data )
{
    AllocFactor( domain.size(), &domain.front() );

    pFactorVector factors;
    int numFactors = GetFactors( domain.size(), &domain.front(), &factors );
    if( numFactors != 1 )
    {
        PNL_THROW( CInconsistentSize,
            "domain must be the same as corresponding domain size got from graph" );
    }
    factors[0]->AllocMatrix( &data.front(), matTable );
}
开发者ID:lspatial,项目名称:spstatics_parallel,代码行数:14,代码来源:pnlMNet.cpp

示例2:

void CSamplingInfEngine::
GetObsDimsWithVls(intVector &domain, int nonObsNode, const CEvidence* pEv, 
		  intVector *dims, intVector *vls) const
{
    int nnodes = domain.size();
    dims->resize(nnodes - 1);
    vls->resize(nnodes - 1);
    
    int* it = &domain.front();
    int* itDims = &dims->front();
    int* itVls = &vls->front();
    int i;
    for( i = 0; i < nnodes; i++, it++ )
    {		
	if( *it != nonObsNode )
	{
	    *itDims = i;
	    *itVls = pEv->GetValueBySerialNumber(*it)->GetInt();//only if all nds are tabular!!
	    
	    itDims++;
	    itVls++;
	}
    }
    
}
开发者ID:lspatial,项目名称:spstatics_parallel,代码行数:25,代码来源:pnlSamplingInferenceEngine.cpp

示例3: AllocDistribution

void CGaussianCPD::AllocDistribution( const floatVector& mean,
		            const floatVector& cov, float normCoeff,
		            const floatVecVector& weights,
		            const intVector& parentCombination  )
{
    if( weights.size() )
    {
	pnlVector<const float*> pWeights;
	int numWeights = weights.size();
	pWeights.resize( numWeights );
	for( int i = 0; i < numWeights; i++ )
	{
	    pWeights[i] = &weights[i].front();
	}
	AllocDistribution( &mean.front(), &cov.front(), normCoeff,
	    &pWeights.front(), &parentCombination.front() );
    }
    else
    {
	AllocDistribution( &mean.front(), &cov.front(), normCoeff, NULL,
	    &parentCombination.front() );
    }
}
开发者ID:lspatial,项目名称:spstatics_parallel,代码行数:23,代码来源:pnlGaussianCPD.cpp

示例4: MarginalNodes

void CGibbsSamplingInfEngine::
MarginalNodes( const intVector& queryNdsIn, int notExpandJPD  )
{
  MarginalNodes( &queryNdsIn.front(), queryNdsIn.size(), notExpandJPD );
}
开发者ID:JacobCWard,项目名称:PyPNL,代码行数:5,代码来源:pnlGibbsSamplingInferenceEngine.cpp

示例5: MarginalNodes

void CExInfEngine< INF_ENGINE, MODEL, FLAV, FALLBACK_ENGINE1, FALLBACK_ENGINE2 >::MarginalNodes( intVector const &queryNds, int notExpandJPD )
{
    MarginalNodes(&queryNds.front(), queryNds.size(), notExpandJPD );
}
开发者ID:JacobCWard,项目名称:PyPNL,代码行数:4,代码来源:pnlExInferenceEngine.hpp

示例6: SetCoefficientVec

void CGaussianCPD::SetCoefficientVec( float coeff,
		                     const intVector& parentCombination )
{
    SetCoefficient( coeff, &parentCombination.front() );
}
开发者ID:lspatial,项目名称:spstatics_parallel,代码行数:5,代码来源:pnlGaussianCPD.cpp

示例7: GetCoefficientVec

float CGaussianCPD::GetCoefficientVec( const intVector& parentCombination )
{
    return GetCoefficient( &parentCombination.front() );
}
开发者ID:lspatial,项目名称:spstatics_parallel,代码行数:4,代码来源:pnlGaussianCPD.cpp

示例8: AllocDistribution

void CSoftMaxCPD::AllocDistribution(const floatVector& weights,
    const floatVector& offsets, const intVector& parentCombination)
{
    AllocDistribution(&weights.front(), &offsets.front(), 
        &parentCombination.front());
}
开发者ID:lspatial,项目名称:spstatics_parallel,代码行数:6,代码来源:pnlSoftMaxCPD.cpp

示例9: GetFactors

int CGraphicalModel::GetFactors( const intVector& subdomainIn,
		                    pFactorVector *paramsOut ) const
{
	return GetFactors( subdomainIn.size(), &subdomainIn.front(),
		paramsOut );
};
开发者ID:JacobCWard,项目名称:PyPNL,代码行数:6,代码来源:pnlGraphicalModel.cpp

示例10: AllocFactor

void CGraphicalModel::AllocFactor( const intVector& domainIn)
{
	AllocFactor( domainIn.size(), &domainIn.front() );
};
开发者ID:JacobCWard,项目名称:PyPNL,代码行数:4,代码来源:pnlGraphicalModel.cpp

示例11: ToggleNodeStateBySerialNumber

void CNodeValues::ToggleNodeStateBySerialNumber( const intVector& numsOfNds )
{
    int numNds = numsOfNds.size();
    const int* pNumsOfNds = &numsOfNds.front();
    ToggleNodeStateBySerialNumber( numNds, pNumsOfNds );
}
开发者ID:lspatial,项目名称:spstatics_parallel,代码行数:6,代码来源:pnlNodeValues.cpp

示例12: ComputeFamilyScore

float CMlStaticStructLearn::ComputeFamilyScore(intVector vFamily)
{
    int nFamily = vFamily.size();
    CCPD* iCPD = this->CreateRandomCPD(nFamily, &vFamily.front(), m_pGrModel);
    CTabularDistribFun *pDistribFun;
    int ncases = m_Vector_pEvidences.size();
    const CEvidence * pEv;
    float score;
    float pred = 0;
    EDistributionType NodeType;
    switch (m_ScoreMethod)
    {
    case MaxLh :
        if ( !((iCPD->GetDistribFun()->GetDistributionType() == dtSoftMax)
                || (iCPD->GetDistribFun()->GetDistributionType() == dtCondSoftMax)))
        {
            iCPD->UpdateStatisticsML( &m_Vector_pEvidences.front(), ncases );
            score = iCPD->ProcessingStatisticalData(ncases);
        }
        else
        {
            float **evid = NULL;
            float **full_evid = NULL;
            BuildFullEvidenceMatrix(&full_evid);
            CSoftMaxCPD* SoftMaxFactor = static_cast<CSoftMaxCPD*>(iCPD);
            SoftMaxFactor->BuildCurrentEvidenceMatrix(&full_evid, &evid,
                    vFamily,m_Vector_pEvidences.size());
            SoftMaxFactor->InitLearnData();
            SoftMaxFactor->SetMaximizingMethod(mmGradient);
            SoftMaxFactor->MaximumLikelihood(evid, m_Vector_pEvidences.size(),
                                             0.00001f, 0.01f);
            SoftMaxFactor->CopyLearnDataToDistrib();
            if (SoftMaxFactor->GetDistribFun()->GetDistributionType() == dtSoftMax)

            {
                score = ((CSoftMaxDistribFun*)SoftMaxFactor->GetDistribFun())->CalculateLikelihood(evid,ncases);
            }
            else
            {
                score = ((CCondSoftMaxDistribFun*)SoftMaxFactor->GetDistribFun())->CalculateLikelihood(evid,ncases);
            };
            for (int k = 0; k < SoftMaxFactor->GetDomainSize(); k++)
            {
                delete [] evid[k];
            }
            delete [] evid;
            int i;
            intVector obsNodes;
            (m_Vector_pEvidences[0])->GetAllObsNodes(&obsNodes);
            for (i=0; i<obsNodes.size(); i++)
            {
                delete [] full_evid[i];
            }
            delete [] full_evid;
        };
        break;
    case PreAs :
        int i;
        NodeType = iCPD->GetDistributionType();
        switch (NodeType)
        {
        case dtTabular :
            for(i = 0; i < ncases; i++)
            {

                pConstEvidenceVector tempEv(0);
                tempEv.push_back(m_Vector_pEvidences[i]);
                iCPD->UpdateStatisticsML(&tempEv.front(), tempEv.size());
                iCPD->ProcessingStatisticalData(tempEv.size());
                pred += log(((CTabularCPD*)iCPD)->GetMatrixValue(m_Vector_pEvidences[i]));
            }
            break;
        case dtGaussian :
            for(i = 0; i < ncases; i += 1 )
            {

                pConstEvidenceVector tempEv(0);
                tempEv.push_back(m_Vector_pEvidences[i]);

                iCPD->UpdateStatisticsML(&tempEv.front(), tempEv.size());
                float tmp = 0;
                if (i != 0)
                {
                    tmp =iCPD->ProcessingStatisticalData(1);
                    pred +=tmp;

                }

            }
            break;
        case dtSoftMax:
            PNL_THROW(CNotImplemented,
                      "This type score method has not been implemented yet");
            break;
        default:
            PNL_THROW(CNotImplemented,
                      "This type score method has not been implemented yet");
            break;
        };

//.........这里部分代码省略.........
开发者ID:PyOpenPNL,项目名称:OpenPNL,代码行数:101,代码来源:pnlMlStaticStructLearn.cpp


注:本文中的intVector::front方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。